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Foreword

The VIII La Plata International School was successfully held in the period
2019 November 11 — 22 on the campus of the Universidad Nacional de La Plata.
The school was organized by the research group Modelos de Estrellas Peculiares
(MEP) of the Facultad de Ciencias Astronémicas y Geofisicas (FCAG).

The subject of this school was Pulsations Along Stellar Evolution. The
offered lectures covered a wide range of topics such as stellar evolution, theoretical
concepts of stellar pulsations, observing and data analysis techniques, along with
practical courses for the analysis of selected pulsating stars. The ultimate goal
of the Summer School was that the participants deepen their understanding of
the physics of stellar pulsations and learn relevant techniques to analyze and
properly interpret observational data of pulsating stars. This was achieved by
the active participation in a number of courses dealing with theoretical exercises
and practical computer-based exercises. This volume provides a comprehensive
summary of the lectures that were presented during the school.

The topics offered by the school attracted 58 participants from 13 different
countries all over the world. The majority of participants came from Latin-
America (Argentina, Brazil, Chile, Peru, and Nicaragua), but we also had par-
ticipants from several European countries (Czech Republic, Estonia, Spain, and
United Kingdom) as well as from Asia (Georgia), Africa (Egypt), Australia, and
the United States of America. By chance, the genders of the participants were
extremely well balanced, with 29 male and 29 female astronomers, physicists and
mathematicians, in divers states of their studies (majority within their Master
or PhD studies) along with a few post-docs and more advanced researchers.

The organization of the school has received funding from the FCAG of the
Universidad Nacional de La Plata, and from the European Union’s Framework
Programme for Research and Innovation Horizon 2020 (2014-2020) under the
Marie Sktodowska-Curie Grant Agreement No. 823734 (POEMS).

We wish to thank the members of the Scientific Organizing Committee for
their excellent selection of teachers and preparation of the program. Further-
more, we wish to express our deepest thanks to the members of the Local Or-
ganizing Committee and those students who helped with the organization. And
finally, we are grateful to all teachers for their fantastic classes and to all partic-
ipants that helped making this school an event to be remembered.

Michaela Kraus
Andrea F. Torres
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A Brief Introduction to Stellar Evolution

Omar G. Benvenuto',

L Facultad de Ciencias Astronémicas y Geofisicas, Universidad Nacional
de La Plata, and Instituto de Astrofisica de La Plata
(CCT-CONICET-UNLP), La Plata, Argentina

Email: obenvenu@fcaglp.unlp.edu.ar

Abstract. With the aim of providing a reference frame for the study
of stellar pulsations we describe the process known as stellar evolution.
Evolution and pulsations are deeply related and the knowledge gained in
one of them has an immediate impact on the other. First we describe
the observational basis, presenting the Hertzsprung-Russell Diagram and
other fundamental concepts. Then we describe the physical context of
stellar evolution in which, quite fortunately, matter is very close to (but
not in) thermodynamic equilibrium. This allows for a simplification of
the problem of paramount importance. We describe the equation of state
of stellar matter, paying attention on when we should expect the oc-
currence of partial and full ionization (fundamental for pulsations), and
electron degeneracy. Then, we present the concept of hydrostatic equi-
librium. As a natural consequence we consider barotropic structures, like
polytropic spheres and cold white dwarfs, discussing the existence of the
Chandrasekhar’s mass limit. As realistic stars are not cold but at fi-
nite temperature (they radiate energy in space!), in general they are non-
barotropic. So, we need to consider the conservation of energy and also its
transport by radiation, convection and conduction. As it is well known,
the engine of stars is nuclear reactions. We present the proton-proton
and carbon-nitrogen-oxygen cycles of hydrogen burning and also the main
helium burning reactions. Then, we make some brief comments on the
methods for solving the full set of non-linear, partial differential equations
of stellar evolution and also those needed for computing the changes of
chemical composition. At this point we are in conditions to present stellar
evolution as a direct consequence of these physical ingredients. We dis-
cuss the main stages of stellar evolution for a variety of objects: pre-main
sequence, low and intermediate mass, white dwarfs, and finally massive
stars. In this paper we restricted ourselves to the case of isolated and non-
rotating objects evolving during their long lived stages. In our opinion,
this provides a general basis for most of the usually considered pulsating
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stars.
Key words: stars: evolution — stars: interiors

"Member of the Carrera del Investigador Cientifico, Comisiéon de Investigaciones
Cientificas de la Provincia de Buenos Aires (CIC PBA), La Plata, Argentina

1. Introduction

In these lectures we shall present the classical problem of stellar evolution with
emphasis on the properties of stars that determine the variety of pulsations they
suffer. This is a vast field of research. Because of lack of space here we are not
in conditions to make an in deep description of each of the addressed topics.
These have been presented in several textbooks. Especially relevant are those
of Chandrasekhar (1939); Cox & Giuli (1968); Clayton (1968); Kippenhahn &
Weigert (1990); Arnett (1996); and Maeder (2009). The reader may be some-
what surprised because the main references of these lectures have been published
sometime ago. The reason is very simple, the most fundamental processes occur-
ring in stars are well understood. Several facts converged to make it possible. For
example, the engine of stars (nuclear reactions) was identified almost a century
ago, and the stellar interiors are extremely close to thermodynamic equilibrium.
This provides a solid basis to investigate this problem. Of course, this means in
no way that the study of stars is over. Definitively this is not the case.

We shall present the theory of stellar structure and evolution paying special
attention to the relevant physical ingredients that determine their lives. In our
opinion, this is essential in order to understand the oscillation properties of stars
from a theoretical point of view. These oscillations carry very valuable infor-
mation about the structure of stellar interiors. Thus, structure and evolution
are intimately related to oscillations and the study of these aspects of stars are
largely complimentary.

Perhaps the most famous diagram related to stars is the Hertzsprung-Russell
Diagram (or simply HRD) in which we plot (for example) their luminosities
versus effective temperatures. There are several versions of the HRD in which
in place of luminosity astronomers employed absolute magnitude and a colour
index (or even the spectral type) replaces the effective temperature. If we collect
intrinsic data quantities from field stars we can construct an HRD where the
distribution of objects is not uniform. In this case, it has a statistical meaning.
There are regions of the diagram where we find a large density of objects. This
is due to the fact that at these regions stars evolve slowly. The so-called “Main
Sequence” (MS), on which we find most of the objects, is due to the strong energy
release by core hydrogen burning occurring in these stars. The MS is the longest
stage of evolution for objects undergoing intense nuclear reactions. The red giant
branch has less stars and is a shorter stage of evolution, etc.

If we collect data from a stellar cluster, all stars are essentially at the same
distance, have approximately the same chemical composition and usually it is
considered that have been born simultaneously. Thus, all stars have the same
age and because they have a mass distribution they are on an isochrone in the
HRD.
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As an example of typical HRDs, in Figure (1) we show them for the open
cluster NGC 2516 and the globular cluster NGC 1261. These diagrams are of
colour index (B-V) (that has a direct relation with effective temperature) versus
the apparent visual magnitude V without the correction for reddening. These
are not intrinsic data since they have to be converted to absolute magnitudes
by means of the distance modulus; but, this is the same for all stars belonging
to a cluster. Consequently, these HRD have the same structure as those with
intrinsic quantities.

Apart from the contamination due to faint field stars that do not belong
to these clusters, the MS is clearly visible in the HRD of the open cluster. In
the case of the globular cluster it is possible to see the lower MS (higher mass
stars evolved off the MS in the far past), the red giant branch (RGB), horizontal
branch (HB), and asymptotic giant branch (AGB).

Usually, the width of stellar atmospheres is far smaller than stellar radii;
and the effective temperature corresponds to a layer in which most photons
escape from the star. As a first, rough approximation, the spectrum of a star
may be considered as a Planckian curve with T' = T,;;. Since we are interested
on the intrinsic properties of stars, in the following Sections we shall consider
the version of the HRD defined by the plane log (L/L¢) versus log (T.ss/K)
where L is the bolometric luminosity, Lo = 3.828 x 10*3ergs—! is the solar
value, T,s; is the effective temperature and K denotes Kelvin degrees. These
quantities are related by L = 47TR20Tfff where R is the radius of the star and

o is the Stefan-Boltzmann constant. Evidently, log (L/Le) = 2log (R/Rs) +
4log (Teff/Teff’@) where T,tro = 5780 K is the effective temperature of the

Sun, that has a mass M = 1.989 x 103 g and a radius of R, = 6.96 x 10'9 cm.

Here we shall restrict ourselves to the case of non-rotating, isolated stars.
We feel it is not possible to present all topics in two lectures. We prefer to
discuss the most relevant stages related with stellar pulsations. Also, we shall
not treat the case of neutron stars and its related physics since it is outside the
scope of this School. Here we shall not try to make a detailed description of the
state-of-the-art of each addressed topic. We consider it more useful to review
established results.

A fundamental assumption is that oscillations do not have any secular effect
on stellar evolution. This means that we do not need to take care of the details of
stellar pulsations to compute stellar evolution. Otherwise we would have faced
(in the language of numerical analysis) an extremely stiff problem since there
occur quite different and relevant timescales. For pulsations, timescales may be
of the order of days or less, whereas stellar evolution proceeds on millions of
years.

The remainder of this article is organised as follows. In Section (2) we
describe the equation of state of matter inside stars. Section (3) is dedicated
to describe hydrostatic equilibrium, where we also briefly describe the theory of
polytropic spheres (§ 3.1) and cold White Dwarfs (WDs) (§ 3.2). In Section (4)
we describe the conservation of energy in the stellar interior. Then, in Section (5)
we present the problem of the transport of energy in stellar interiors, making a
description of the main characteristics of radiative (§ 5.1), convective (§ 5.2), and
conductive (§ 5.3) transport mechanisms. The Section (6) is devoted to describe
the fundamental characteristics of nuclear reactions in stellar interiors. Then
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Figurel.  The HRD of the open cluster NGC 2516 (Sung et al., 2002b)
(data available at Sung et al. 2002a) and the globular cluster NGC 1261
(Kravtsov et al., 2010b) (data available at Kravtsov et al. 2010a). For
details see text.
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we describe in some detail the Proton-Proton (§ 6.1), Carbon-Nitrogen-Oxygen
(§ 6.2) and Helium burning (§ 6.3) cycles. In Section (7) we briefly describe
the full system of differential equations that describe stellar evolution together
with the method of solution for the equations of structure (§ 7.1) and chemical
evolution (§ 7.2). Then, in Section (8) we describe stellar evolution. Subsection
(§ 8.1) is devoted to describe the main characteristics of Pre-MS evolution. (§ 8.2)
is dedicated to the case of the evolution of our Sun and low mass stars. (§ 8.3)
is devoted to the case of intermediate mass while in (§ 8.4) we describe the main
characteristics of WDs evolution. Closing this section, in (§ 8.5) we address the
case of massive stars. Finally, in Section (9) we give some concluding remarks.

2. The Equation of State

For describing stars one of the most relevant physical ingredients is the behaviour
of matter. This is described by the so-called “Equation Of State”, or EOS.
Inside stars, matter can be found on an extremely wide variety of conditions.
Apart from its chemical composition, the density and temperature vary from
p=10"12gem 2 and T ~ 10° K in the photosphere of a giant to p = 10! g em 3
and T =~ 10'0 K in the core of a pre-supernova near core collapse. So, matter can
be non, partially, or fully ionized, electrons may be degenerate, and even there
may appear pairs electron-positron at very high temperatures (7' > 5 x 10° K).
Also, in conditions of low density and high temperature, radiation pressure is
relevant.

A fundamental approximation, fully justified in stellar interiors is the so-
called “Local Thermodynamic Equilibrium” or LTE. It is quite obvious that stars
are not in thermodynamic equilibrium, simply because they irradiate. However,
variations of T, p, etc. in stellar interior are not very steep. As a consequence,
the radiation field is anisotropic but only to 1 part in =~ 10 (see, e.g., Clayton
1968). So, the state of matter is extremely close to equilibrium. Thus, LTE
is valid and so, to describe the EOS we can employ the thermodynamics of
equilibrium.

Another fundamental fact is that the energy of interaction between particles
use to be far smaller than their kinetic energy. Thus, we may consider the mate-
rial as composed by non-interacting particles. Interactions, e.g., electrostatic or
Coulomb, are considered only for constructing very detailed stellar models (see
below§ 3.2).

Taking into account that particles that compose matter are fermions (their
spins are i/2, where £ is the Planck constant h over 27.), they obey the Fermi-
Dirac statistics. Then, we can write the EOS of fermionic non-interacting parti-

cles as (Chandrasekhar, 1939)

B 8—7'1' 0 p3,Up
Foas = 373 /0 1+ exp[B(E(p) — )] ap, (1)
Egas 8t [ sz(p)
_ 5 dp, 2
v h3/0 e BB — )] F 2)
N 37 p?

dp. (3)

—=n

v :h?’/o 1+ eap[B(E(p) — )]
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Here, § = 1/kT, P,qs is the pressure due to particles and Fyq; is their kinetic
energy, V is the volume, N is the total particle number, n is their number density,
k the Boltzmann constant, p is the momentum of the particles, E(p) is the energy
of the particles of mass m and impulse p given by E(p) = 1/p2c? + m2c* — mc?,
v, 1s its velocity, and c is the speed of light. This represents a parametric EOS
where the parameter is the chemical potential .

If density is low enough, quantum mechanical effects are negligible and the
gas behaves as non-degenerate (Maxwell-Boltzmann statistics). Then, we im-

mediately arrive to the famous and simplest EOS: Py, = %, where p is the

mean molecular weight (this is a misleading name since in most cases there are
no molecules). For full ionization we have 1/u = > X;(Z; +1)/A; where X; is
the mass fraction of the i- component of the plasma, Z; is its electric charge and
A; is its atomic weight. In this case, the mean kinetic energy of each particle
is 3kT'/2 and the contribution to the specific heat per particle is 3k/2, i.e., a
constant.

Frequently, the abundances of hydrogen and helium are denoted by X and
Y respectively, while Z denotes the heavier elements fraction; they verify X +
Y+Z2=1

If temperature is not so high to provide full ionization, in order to consider
the EOS properly we have to solve for the ionic mixture. Because of the validity
of LTE we can do it by employing thermodynamic equilibrium that leads to the
so-called Saha’s law. For the case of the ionization of hydrogen it reads (we
ignore corrections due to internal partition functions)

nptNe _ 2rm kT \ %/ oxp [ XH (4)
nir n2 PA\TaT

where n; are the particle number densities, xg = 13.59 €V is the ionization
potential, and m, is the electron mass. While here we present only the expression
for hydrogen, we need to consider all the elements present in the mixture (see,
e.g., Baker & Kippenhahn 1961). It leads to a non-trivial system of equations.
Considering ionizations in detail is of central relevance for stellar pulsations.

The effect of ionizations on the gas pressure is rather obvious, since it affects
the amount of free particles. Ionization is a way of storing heat that largely affects
the specific heats. For example, for a pure hydrogen plasma, when the fraction
of ionized atoms is of 50%, the specific heat at constant volume C), is &~ 20 times
the C, without considering ionizations (Clayton, 1968).

If the gas has a much higher density, due to its very low mass compared
to that of nucleons (~ 1830 times lower), electrons depart from the classical
behaviour. Electrons provide a strong pressure P, due to the Pauli’s exclusion
principle (there can be only one fermion per energy level). If thermal effects are
negligible (kKT < 1) we may set T' = 0. In this case, the distribution of occupied
levels goes up to the Fermi impulse p;, which is related to the chemical potential

by 1 = p?cc2 + m2ct = mec?Va? + 1 (where & = py/mec). In this case, the

particle number density is n oc 2* whereas, if density is not too high (see below),
electron will behave as non-relativistic and then P. oc 5. On the contrary, if
density is higher and electrons are very relativistic we have P, o< z*. In this case
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the integrals in Equations (1)-(3) extend on the interval of impulses [0, p¢], the
denominator is 1 and the EOS is (Chandrasekhar, 1939)

P.=Alz(22® - 3)Vz? +1-3In(Va? + 1 — 1) (5)

and

p/ e = Bz, (6)

where A = (87/3)m.c? (mec/h)s, B =38r (mec/h)?’ and . is the mean molecular
weight per electron. For full ionization we have 1/u, = > X;Z;/A;. Another
very important characteristic of degenerate electron gas is that it is not efficient
for storing heat. It can be shown that C, « T' (Chandrasekhar, 1939) which is
characteristic of fermionic excitations.

Notice that here we have assumed full ionization even at T = 0. This is
due to the so-called ionization by pressure. The reason for this to occur is that
particles are so close each other that the wave function corresponding to bound
states has no room to accommodate. Consequently, bound states cannot be
occupied.

Another very important source of pressure is photons. Photons are massless
Bosons (they have spin /) and follow the so-called Bose-Einstein statistics!. As
the number of photons is not defined, the chemical potential of photons is zero.
This leads to the Planck function B,

2h13 1

By = 2 ehv/kT _ 1’ (7)

where v is the frequency of radiation. Photons provide the radiation pressure
that is given by the very simple expression

Praa = 5aT*, (8)
where a is the constant of radiation.

In Figure (2) we present the typical thermodynamic conditions for stellar
interiors. We describe the regions in which the different sources of pressure dom-
inate over the others. For example, the division between the regions dominated
by gas and radiation pressure is given by Pr.q = Fyas, etc. Also we included
the structure of several stellar interiors. For the star of 20 M, radiation pres-
sure is important, whereas this is not the case for a 1 M, object. Also, we
show the structure of a 0.8 M, carbon-oxygen WD. While its outer layers are
non-degenerate, the deep interior is at very high densities reaching relativistic
conditions.

As we shall see below, the equations of stellar evolution include a temporal
derivative of the entropy S; so, it is useful to write down the differential of S. If
we consider P and T as independent variables, this differential is

LAn even number of fermions may be together in a bound state, e.g., a *He nucleus. These
compound objects have a spin value that is an integer multiple of %; so, they are bosons too.
However, these particles are so massive that are non-degenerate in normal (not neutron) stars
and the quantum effects are negligible for their description.
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Figure 2. The conditions at which dominates each of the four basic
sources of pressure. Black solid lines divide each region. As examples
of stellar structures we included several relevant cases. In blue lines
we plot the structure of a 20 Mg, star on the Zero Age MS (solid) and
the conditions at helium core exhaustion (dashed). The structure of a
1 M, is denoted with red lines for the case of the present Sun (solid) and
when reached red giant conditions (dashed) previous to the helium flash
(see below § 8.2). Solid green line depicts the structure of a 5 M, star
well after helium core exhaustion. Finally, in solid cyan line we show
the structure of a cool 0.8 M, carbon-oxygen WD. All these states of
evolution are described below in Section (8).
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5
a8 = CpdT — _dP. 9)

Here C'p is the specific heat at constant pressure and ¢ is the thermodynamic
derivative § = —(8Inp/0InT) .

The problem of the stellar EOS is treated in all textbooks cited above and
also in several papers, the interested reader may consult for example those of
Kippenhahn et al. (1967); Cox & Giuli (1968); and Timmes & Arnett (1999).

3. Hydrostatic Equilibrium

Stellar evolution proceeds so slowly on time that we can consider it as a contin-
uous sequence of structures in hydrostatic equilibrium. For non-rotating, New-
tonian objects, the equations that describe this condition are?

dP  GM,

P (10)
and

djl\fr = d7r?p. (11)

Here P is the total pressure, r is the radius, G is the Gravitational constant,
M, is the mass enclosed inside a sphere of radius r, and p is the density. The
boundary conditions are M, = 0 at » = 0 and the surface is defined by zero gas
pressure Py,s = 0; there r = R.

Equations (10) and (11) can be solved if the EOS of material behaves as
barotropic, i.e., P = P{p). This is the topic of the next two subsections.

3.1. Polytropic Spheres

Let us consider a particular barotropic form for the EOS: P = Kp*t1/" where
n is the polytropic index and K is a constant. If we define p = p.0" where

pe 18 the central density and 6 is the polytropic function; and r = «&, where
2 _ (n+1)K 1/n—1

a =5 e we find the Lane-Emden equation
1 d [ odf
— 22 = g, 12
el €)= 12

The corresponding boundary conditions are 8(§ = 0) = 1, df/d€|¢—o = 0 and the
surface is defined by (¢ = &) = 0; thus, the radius R is R = afg. The mass of
the whole sphere is given by M = 4ra®p.(—£2d0/dE)¢—¢,. The solution of the
Lane-Emden equation and the density profile is shown in Figure (3) for some
values of the polytropic index. Analytic solutions for Equation (12) are known
for n =0,1, and 5.

2These equations are not applicable to neutron stars. In this case we need to consider the
Tolman-Oppenheimer- Volkoff equations that correspond the case of gravitation described by
General Relativity (see Shapiro & Teukolsky 1983).
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Figure 3.  The polytropic function (left panel) and the density profile
(right panel) for few values of the polytropic index.

Polytropes with n = 3/2 are a good approximation for fully convective stars
at the Hayashi Track during the Pre-MS evolution (§ 8.1) and also for low mass
WDs (§ 3.2). The case of n = 3 nicely represents the case of very massive WDs

(§ 3.2) and sometimes is employed as a rough approximation to the structure of
MS stars (Arnett, 1996).

3.2. Cold White Dwarf Stars

The simplest way to study the structure of WDs is to consider them to be chemi-
cally homogeneous at zero temperature with the EOS described by Equation (5).
This EOS is not polytropic but equations may be handled in a similar way to
find the equation that describes the structure of WDs. Indeed, as quoted above,
its polytropic index is 3/2 at low densities and 3 at high densities (relativistic
degeneracy). This was done by Chandrasekhar (1939) who found one of the
most relevant results of stellar astrophysics: a degenerate star can be in hy-

drostatic equilibrium only if its mass is below a value currently known as the
Chandrasekhar’s Mass Limit

My, = —5 M. (13)
He

Because of evolutionary reasons, WDs with masses M > 10 2M, can have a
little amount of hydrogen located in the outermost layers. This has a minor
effect on the total mass of the WD. If we neglect it, for objects composed by
matter that has symmetric nuclei (these are nuclei with the same number of
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protons and neutrons, e.g., *He, 12C, 190, etc.) pe = 2 and Mgy, = 1.4M:3.
Observations to measure the masses and radii of WDs are difficult, in any case
they are in nice agreement with the predictions of this theory. S. Chandrasekhar
awarded the Nobel Prize of Physics in 1983 for this work.

Remarkably, the WD with M = Mgy, has infinite density and zero radius!
Evidently, this indicates that some basic hypotheses have to be improved, at
least for very massive WDs. This was done by Hamada & Salpeter (1961) who
applied the EOS derived by Salpeter (1961). They considered Coulomb and
other interactions for the cold degenerate plasma. These corrections represent
a negative correction to the pressure of free electrons. So, for a given pressure
the gas is denser compared with the value corresponding to the free particle
treatment given by Equation (5).

At very high densities (p > 10°gem 3) the electron chemical potential
becomes so high that it is energetically favourable their capture by nuclei. This
phenomenon is usually known as “electron capture”. Thus, at such high densities
an increase in density makes the pressure to grow slower (the EOS softens). This
induces the occurrence of a gravitational instability at a mass similar to the value
found by Chandrasekhar, but ot finite stellar radius.

An important result is related to very low mass objects (M < 10 2Mg):
the corrections to the free particle EOS become proportionally larger the lower
the object mass is. Then, it is found that there is a maximum radius for such
low mass objects. This result is absent in the treatment by Chandrasekhar, who
found that the lower the mass the larger the radius. Because of the complexity
of its EOS (see, e.g., Saumon et al. 1995), very low mass WDs are not simple
objects. They are deeply related to the Solar System’s gaseous giant planets?.

The mass radius relation for cold WDs is presented in Figure (4) (see also
Hamada & Salpeter 1961).

Among other phenomena, the theory of WDs has a direct impact for example
in the theory of Type la supernova explosions. Further details on the physics of
cold WDs can be found in Shapiro & Teukolsky (1983).

Let us remark that, apart from the great success of this theory, this is not
enough for considering the non-radial pulsation of WDs. For such purpose the
zero temperature hypothesis must be relaxed and WDs should be constructed as
consequence of stellar evolution as it will be described below in § (8.4).

4. Conservation of Energy in Stellar Interiors

In order to study non-barotropic structures we have to consider the conservation
and transport of energy in stellar interiors. The equation of energy conservation
can be written as

oL,
Or

= 47Tr2p<en —&y — T%f r>. (14)

SHowever, for an iron °®Fe composition, ., = 2.153 and Mgy, = 1.24M

“This is especially true for Jupiter and Saturn because their structures are mostly gaseous.
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Figure 4. Mass radius relation for cold WDs. Solid lines represent
sequences that consider the Salpeter (1961) EOS and are similar to
those presented by Hamada & Salpeter (1961). Dashed lines denote
the Chandrasekhar WDs. We considered models of carbon and iron.
Green dots represent the data given in Dufour et al. (2017). Notice
that massive WDs (M 2 0.6M) are in excellent agreement with the
theoretical results. Lower mass objects have larger radii due to thermal
effects (See below, Figure (12)).
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Here L, is the luminosity that emerges from a spherical surface of radius r, &,
(ey) is the energy release (loss) due to nuclear reactions (neutrino emission) per
gram and second, and S is the entropy per mass unit. We should remark that
the derivative of the entropy is computed for a fixed mass element (Lagrangian)
since it is the element that exchanges energy. ¢, and ¢, are functions strongly
dependent on the temperature, density and the chemical composition. So, it is
unavoidable to compute the chemical evolution of the stellar interior to compute
stellar evolution.

The boundary condition is L, = 0 at the stellar centre. Since there occurs a
partial derivative with respect to time, this indicates that the star at time ¢t + At
is connected with its structure at .

There may occur (for example in the case of cold WDs) that ¢,, =0, ¢, =0
and L, > 0. So, the star is releasing entropy. This does not violate the second
principle of thermodynamics, since radiation carries away entropy and in such
case the isolated system in which total entropy cannot diminish is the star and
the surrounding space.

5. Transport of Energy in Stellar Interiors

Because of the variety of thermodynamic conditions, it is not surprising that
all possible processes of energy transport play a réle in stellar interiors. These
processes are radiation, convection and conduction.

Radiation is the dominant process for transporting energy when material
is transparent enough. Material may be considered at rest and the transport is
driven by electromagnetic radiation. When matter is not so transparent, energy
is transported by convection. Convection can be roughly described as two cur-
rents of matter moving, one outwards and the other inwards without net mass
flux. If the outward flux carries more energy than the inward one it renders a
net energy flux. Convection is one of the most uncertain ingredients of stellar
interiors. This is especially important for the case of the outer layers of cold
stars. Indeed, the uncertainties in the treatment of convection (usually the Mix-
ing Length Theory MLT) prevent us to get a fully predictive theory in the red
part of the HRD. Finally, conduction is important in conditions of very high
densities.

Most of the stars have radiative and convective layers. For example, our Sun
has a convective envelope and radiative interior, massive stars on the upper MS
have convective cores and radiative envelopes, etc. Conduction is important in
conditions of very high densities attained in the core of red giant stars and WDs.
Indeed, conduction is usually considered so efficient that it is able to transport
energy with a very small temperature gradient. In other words, conduction
usually lead to structures nearly isothermal.

There is another physical process capable of transporting energy. This is
the emission of neutrinos. In the context of normal stars, this is fundamentally
different from the other three processes quoted above. Neutrinos have a so small
interaction cross section with matter that their mean free path is by far larger
than star sizes. So, neutrino emission acts as a local cooling process. The only
contexts in which neutrinos have to be transported are core collapse supernovae
(Janka et al., 2016) and the birth of neutron stars (Burrows & Lattimer, 1986).
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5.1. Radiative Transport and the Opacity

The opacity is due to interactions that remove photons from a given direction
of propagation. There are of two types of opacity sources qualitatively different.
One can be defined as true absorption in which a photon is destroyed and its
energy is employed to excite some degree of freedom of the plasma. The other
process does not destroy the radiation but changes the direction of propagation;
this is the scattering.

True absorption is due to

e Bound-Bound transitions: An electron jumps from a discrete level to an-
other at higher energy. It leads to discrete absorption opacity.

e Bound-Free transitions: An electron jumps from a discrete level to the
continuum. It leads to continuous opacity with a sharp cut off edge at
wavelength corresponding to photons with the ionization energy.

o Free-Free transition: An electron jumps from two states of the continuum
in the Coulomb field of a neighbouring ion. It also leads to continuum
opacity.

At conditions of full ionization of the material, the only possible process is scat-
tering. This due to the well known fact that free particles cannot absorb photons.
It is easy to verify that the absorption of a photon by a free particle cannot fulfil
energy and impulse conservation simultaneously.

As stated above, the stellar interior is in LTE. Thus, the radiation field is
almost a black body spectrum given by Equation (7). It can be shown (see,
e.g. Clayton 1968) that the opacity relevant for stellar interiors is the Rosseland
mean opacity, defined as

0 -1 roo
< [/ 4By du] / __ L B, (15)
KR o dr 0 FKigt s dT
where x;, , is the true absorption coefficient x,, corrected by induced emission
Kyo = /@Ma(l — exp (—hu/k:T)), and r, s is the scattering coefficient.

Considering the number of species, the different degrees of ionization and
the population of the energy levels of each of them it is easy to conclude that the
amount of possible transitions is quite large. Also, in order to apply the theory
of interaction of matter with radiation it is necessary to know the wave function
of the present ions and the perturbations due to mean field effects that were
not essential for the treatment of the EOS here are unavoidable. This makes
radiative opacity calculations among the most difficult in astrophysics. Notice
that in most cases the results are hardly testable in laboratory. This is not a
minor difficulty.

The first opacity tables were computed assuming that all wave functions
correspond to hydrogen like ions (ions with charge Z and one bound electron)
which represents a poor approximation to reality. Since computational facilities
were powerful enough, opacities were largely improved. Now, the OPAL project
Iglesias & Rogers (1996); Rogers & Iglesias (1992) published tables of Rosseland




A Brief Introduction to Stellar Evolution 17

opacities® that cover a large portion of the conditions present in stellar interiors
and virtually all chemical mixtures expected to occur in stars. For a given
chemical composition these tables are presented as functions of the logarithms
of T and R, with the latter defined as® R = p/T3 (where Ty is the temperature
in millions of Kelvins). These tables cover temperatures from 6 x 108K <T <
5x 10K and 1078 < R < 10%.

OPAL calculations neglect the presence of molecules. For temperatures
below few thousands of Kelvins molecules have to be included. Classical calcula-
tions of opacities considering the molecular contributions have been presented by
Alexander & Ferguson (1994) who tabulated opacities for a variety of chemical
compositions, temperatures in the interval 2.7 < log (T'/K) < 4.5 and the same
values of R as in OPAL tables.

A typical result is presented in Figure (5) where we show the values of opac-
ity for a Solar mixture (X = 0.70, Y = 0.28, Z = 0.02) as function of the
temperature for different values of R. For low temperatures, kp has a deep min-
imum and tends to increase with T up to values at which molecules are broken.
The maximum opacity values correspond to conditions of partial ionization of
the species that dominate the composition (in this case hydrogen and helium).
At higher T, kr decreases being dominated by bound-free and free-free transi-
tions. For even higher T, and especially for low R values, kp shows a remarkable
minimum. It corresponds to fully ionized matter that has a Thompson scattering
opacity which corresponds to a value of kg = 0.19(1 4+ X)em? g 1.

In spite of the great efforts devoted to improve stellar opacities, still there
are conditions for which they are not accurately known. This is so especially
since for low mass objects interactions are strong and the perturbative expansion
employed become poor approximations. This is the case found for the envelope
of WDs and also very low mass stars and substellar objects.

It cannot overstated the relevance of the opacity. It appears in the equa-
tions of stellar evolution and oscillations. However, there is a quite remarkable
difference: while opacity derivatives play no role in stellar evolution, they are
essential for non-adiabatic pulsation calculations. So, it is not only necessary to
know opacities accurately but also their derivatives (see carefully Figure (5)).

If radiative transport prevails, the gradient of temperature is given by

dlnT 3 krPL,
Viad = = 16
d (dln P>md 16macG M,T* (16)

5.2. Convective Transport

In convective zones we need to compute the temperature gradient V yy,,. The
treatment usually employed is that given by the Mixing Lenght Theory (MLT).
This theory assumes (see, e.g., Cox & Giuli 1968; Kippenhahn & Weigert 1990)
that bubbles carry heat that is exchanged with the surroundings after travelling

"These are available at https://opalopacity.llnl.gov/existing.html. Also, they provide
interpolation routines tailored to handle these tables.

5This quantity has been chosen because of numerical convenience since in stellar interiors R
vary on a much narrower interval than p, that was employed in older tabulations.
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Figure 5. The Rosseland mean opacity for a Solar mixture. At low
temperatures (Log(T/K) < 3.7) opacities include the contributions due
to molecules whereas for higher temperatures they are due to atoms,
ions, and electrons. Different lines are labelled with the corresponding
value of Log(R). For further details see text.
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a distance ¢. Remarkably, this critical parameter is not provided by the theory.
This is a serious shortcoming since the temperature gradient V., is strongly
dependent on this parameter. Frequently, ¢ is adjusted to fit the radius of the Sun
and then is applied to any star. Certainly, this procedure is not free of objections.
There are in the literature a large number of proposals of how to improve the
treatment of energy transport by convection. However, there is no consensus on
what is the best way to do it. Clearly, this problem is still open. Despite these
limitations, MLT is used in stellar modelling because of its simplicity.

The temperature gradient V..ny can be expressed as a function of two di-
mensionless parameters: U and W defined as

3acT? 8Hp
U= 17
Cpp?rpl?\ ¢é (a7
and
W =V,ud — Vad (18)

where g is the gravitational acceleration, and Hp is the pressure scale height.
U is proportional to the ratio of the time for free falling a distance ¢ and the
thermal adjustment timescale. Usually, ¢ is written as ¢ = a,:Hp where am;
is a free parameter and Hp is given by

dr P P

—dlogP - gp - GM,p

Notice that Hp — oo at the stellar centre, while near surface it is Hp < R.
With these quantities we have to solve the cubic equation

Hp = (19)

8U
(5—U)3+?(£2—U2—W):0 (20)
and then, we compute the temperature gradient with

vcanv = vad + 52 - U2' (21)

Due to the rough description of convection made by the MLT, V .., is a
rather uncertain quantity. In convective cores this uncertainty has no impact on
the structure of the star, since Vo, differs from V,, typically only in = 1072,
In other words, at these conditions convection is almost adiabatic since the heat
exchanged is far smaller than the heat content of the material. However, this is
not the case for convective envelopes. In outer layers, convection is appreciably
non-adiabatic (the difference V .y, — Vg is non-negligible) and the uncertainties
in V oy make the outer structure of these stars to be poorly known. This fact
is sometimes forgotten but it is very relevant for a correct interpretation of the
observational data based on theoretical models that employ this theory.

5.3. Conductive Transport

As already quoted, conduction is important at high densities. In these condi-
tions electrons are largely inhibited to undergo Coulomb scattering because most
quantum states are occupied (and then, they are not available as final state for
scattering because of the Pauli’s exclusion principle). Thus, electrons use to have
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a very large mean free path and carry information of temperature differences over
long distances. This process has been studied in many papers, e.g., Itoh et al.
(1983); Itoh et al. (1984).

Conduction is usually handled to define a conductive opacity equivalent to
the Rosseland mean opacity. Then, radiative and conductive opacities are added
as parallel resistances in electric circuits:

LR - (22)
K KR Keond
Evidently, the dominant opacity is the lowest of them.

As stated above, there are thermodynamic conditions at which kg is not
accurately known and we cannot apply Equation (22). Fortunately, in most
situations this does not represent a serious shortcoming since in these cases we
have keong € kg and then, K = Kcong

6. Nuclear Reactions

At present, it is clear that the main source of energy that allow stars to shine on
very long times is nuclear reactions.

Nuclei are objects formed by protons and neutrons that remain bound by
strong interactions. Usually, the numbers of protons and neutrons are denoted by
Z and N respectively while the total baryon number of a nucleus is A = N + Z.
The radius of nuclei is approximately 1.2 x 10713 A3 ¢m = 1.24Y3 Fm. Let us
define the binding energy B(A, Z) as B(A, Z)/c? = M(A, Z)— Zm,—(A—Z)m,,.
Here M (A, Z) is the mass of the nucleus (4, Z) and m, (my) is the mass of the
proton (neutron). A nucleus can exist if B(A,Z) < 0, i.e., to disintegrate it is
necessary to add an amount of energy greater or equal to |B(A, Z)|. Notice that
the condition B(A, Z) < 0 does not imply the stability of nucleus (A4, Z); it may
be stable or decay by several channels (e.g., by the emission of a photon, proton,
neutron, electron, 4He, etc.).

It is well known that the most tightly bound nuclei are those with Z values
close to iron: vanadium, manganese, chromium, cobalt, nickel, copper, etc. If a
fusion reaction occurs between light nuclei and produces a nucleus lighter than
iron peak isotopes, in general it will be exothermic. This is the way stars release
energy: they continuously undergo reactions that produce more tightly bound
nuclei. As energy conserves, a part of it may be stored in its interior and the
rest is released as luminosity.

As in any combustion process, nuclear reactions modify the composition
of the stellar interior and slowly change the mean molecular weight. So, the
stellar structure has to accommodate to the continuously changing distribution
of elements, modifying its characteristics (radius, luminosity, etc.). This, and
the energy released as luminosity are the very reasons why stars evolve.

At the conditions present in stellar interiors, protons, neutrons and nuclei
are non-degenerate particles that obey the Maxwell-Boltzmann distribution of
velocities

5 B2 3/2 ) /“}2
o(v)d’v = 47T<27T/Lk‘T> V7 exp ( - ﬁ>dv (23)



A Brief Introduction to Stellar Evolution 21

where p is the reduced mass of the reacting particles”, and v is their relative
velocity. This fact is of enormous relevance, since the particles that undergo the
reactions are in the high energy tail of the distribution.

Nuclear reactions in astrophysics occur at very low energy. Let us imagine
that two positively charged nuclei approach each other. Since typical energies
are low (~KeVs) and the potential barriers are much higher (=MeVs), classical
physics predicts the occurrence of a turning point of the trajectories that pre-
vents nuclei to get close enough to feel their structures, inhibiting any reaction.
However, the correct treatment is given by quantum mechanics which allows the
occurrence of the tunnel effect that provides a way for nuclei to go across the
potential barrier and allows the reaction to occur.

The fundamental quantity to go further is the nuclear reaction cross section
o, usually is defined as

2
_ S(E) eXp(— 27TZ}(7:)1}21€ > (24)

The exponential factor is the so-called Gamow Fuactor that describes the tun-
nelling across the repulsive Coulomb potential, E = pv?/2 is the energy at the
reference frame in which the centre of mass is at rest, Zy and Z; are the charges
of the reacting nuclei, and e is the electric charge unit. In the case in which
the energy of the projectile does not coincide with any energy level of the nuclei
S(F) is a smooth function and the reaction proceed as non-resonant.

In the case in which particles reach the energy level of the compound nucleus,
o is described by the Breit-Wigner cross section

20+1 rr-r,
L2041, Tuf-T.)

ir " (E—E,)2+T?%

(25)

Here ¢ is the quantum number of angular momentum corresponding to the res-
onance, F, is the energy of the resonance, I' is the width of the energy level, T,
is the width due to the resonance channel, and A is the De Broglie wavelength
of the particle.

The factor S(F) in Equation (24) cannot be measured in laboratory directly
for the range of energies at which non-resonant reactions occur in stars. At
these energies, reaction cross sections use to be too low for such purpose. So,
it is a common practice to measure the reactions at energies much higher at
which resonances occur and reactions are by far more frequent. Then, employing
expressions like Equation (25) the cross section is eztrapolated to stellar energies.
This procedure leads to uncertainties in the knowledge of the factor S(E).

In order to compute the energy release due to nuclear reactions as well as
the change of chemical abundances we have to compute their reaction rates. This
is given by an integral over the distribution of velocities of the particles

NoNVy
r =
1+ d0,1

/0 ~ o) v $(v)du (26)

"Do not confound with the mean molecular weight defined in the treatment of the equation of
state.
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where Ny and N; are the particle number densities of the reacting nuclei. The
Kroenecker’s delta takes into account that if particles are identical, the number
of different pairs has to be corrected by a factor of one half.

In the case of non-resonant reactions the rate is

2.62 x 102, XX,
= Sor? - st 27
Ty (1+5071)AZ0Z1P oA, 0T exp( 7‘) cm 7 s, (27)
where Ag and A; are the masses of the reacting nuclei, Xy and X7 are their
abundances by mass, and A the reduced mass (1/A = 1/4¢ + 1/A1). So is the
value of S(FE) at the energy of maximum efficiency of the reactions (Clayton,
1968) given in units of KeV barn (1 barn= 10"?*cm?), and 7 is

7272 A\ '/?
T= 42.48<L> : (28)
6
For the case of resonant reactions the expression is
2.94 x10% ,XoX; 1 Ty(T —Ty) E, P
= —11.61— Us 29
I'r 1+ 5071 P A()Al ATG T oxp ( T6> an s ( )

where F, is the energy of the resonance in KeV units and I'; is the energy width
of the resonance employed by the reaction.
The energy release due to nuclear reactions is given by

Enuc = % Zan’ (30)

)

where (J; is the energy released and the sum goes over all the reactions.

6.1. The Proton-Proton Cycle

The Proton-Proton cycle is the following sequence of reactions

'H+'H - 2D+e +u, (31)
D+'H — 3He, (32)
SHe+3*He — *He+2'H, (33)
SHe+*He — 'Be, (34)
"Be+e” — "Litu,, (35)
"Li+'H — 2%He, (36)
"Be+'H — ®B, (37)
5B — ®Be+4e" 4, (38)

Be — 2%He. (39)

The key Reaction (31) of the Proton-Proton cycle was identified by Hans
Bethe. Two protons encounter each other; then, one becomes a neutron and
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get bounded as a deuteron. This is a weak interaction that has an extremely
low cross section. The deuteron is the simplest composed nucleus with a low
binding energy. Considering it as bounded in a spherical potential well, the wave
function occupies an appreciable volume in space, even outside the well. This
has the important consequence that Reaction (32) has a cross section larger than
Reaction (31) by a factor of ~ 10'®. Then, in the deep solar interior, the ratio
of the abundances of deuterium to hydrogen is (D/H)® ~ 107'%. However,
remarkably, on Earth this ratio is much larger: (D/H)ea ~ 10~%. This fact is
easily accounted for if we assume that the deuterium present on Earth is due
to Big Bang nucleosynthesis and that the matter forming the Earth has never
been in the solar interior. Evidently, it imposes a fundamental condition to any
theory of the formation of our Solar System.

The deuteron captures another proton and produces a *He (Reaction 32).
Then, two * He nuclei fuse to give a *He and two ' H (Reaction (33)). This is the
PP I subcycle. When there is “He, it is possible the occurrence of Reaction (34),
and the cycle goes through subcycles PP II (Reactions (31), (32), (34), (35), and
(36)) or PP III (Reactions (31), (32), (34), (37), (38), and (39))

Because in this cycle the reactions involve the lightest nuclei, the Coulomb
barriers are the lowest possible. So, the PP-cycle is the dominating energy source
at low temperatures (see below Figure (6)). Of course, there are reactions that
can occur at lower temperatures. For example, Reaction (32) is the only one
that occurs in substellar objects with masses of > 10 2M,,. For the case of Solar
composition objects, it dominates for stars with M < 1.2M.

The rate of energy release for the PP-cyle in stationary conditions® is given
by

33.80
Epp =238 X - (— T1/3> ergg ts L. (40)

/o
TG 6

The PP-cycle is self starting. It needs no other isotope but hydrogen present
for it to occur (of course, if there is no “He, the only possible subcycle is the
PP I). This is in sharp contrast with the next cycle to be presented, the Carbon-
Nitrogen-Oxygen cycle

6.2. The Carbon-Nitrogen-Oxygen Cycle

The other way to burn hydrogen in stellar interiors is the Carbon-Nitrogen-
Oxygen (or CNO) cycle:

8This corresponds to the case in which deuterium and the isotopes of lithium, beryllium and
boron have low abundances that remain almost constant on the timescale of hydrogen burning.
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Roy'H - BN, (41)

BN & BCte 4o, (42)
Boy+'H - N, (43)
UN+IH - PO, (44)

o — BN4te +u,, (45)
UN+H - 2C4+4He, (46)
BN4+IH = 190, (47)
Yo+'H - F, (48)

F = 04+e" 4o, (49)
Y"O+'H — YN 4+“*He. (50)

The CNO cycle does need for the presence of '2C or *N. This is very
different from the PP-cycle. In this cycle protons are captured on heavier nuclei
that produce p-unstable isotopes that decay on a timescales of few minutes.
Protons are converted to neutrons in such decays (Reactions (42), (45), and
(49)). This cycle is usually divided in two subcycles, the CN (Reactions (41)-
(46)) and ON (Reactions (44), (45), and (47)-(50)). In the CN (ON) subcycle the
12C (14N) acts as a catalyst because it is destroyed and then produced during
the subcycle.

Compared to the PP-cycle, since proton captures occur on heavier nuclei,
the CNO cycle is possible for higher temperatures. The mean energy release in
stationary conditions is given by

XX 152.28
Eono = 8.67 x 1077 P20CN gy ([ 0228 g g 1t 51)
T /3 T1/3
6 6

where Xy is the abundance of 2C and '4N.

6.3. The Helium Burning

The main helium burning reactions are

‘He+*He < ®Be, (52)
8Be+1He « 12C*, (53)

1200 120’ (54)
Lo yiHe — 190, (55)
Y0 +4He — 2Ne, (56)
ONe+4He — *Myg. (57)

Considering that the species present at the end of hydrogen burning are
helium and traces of hydrogen, a fundamental difficulty for burning helium is
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that there are no stable nuclei with A = 5 or 8 in Nature. The 3a cycle? is
formed by Reactions (52)-(54). This has been proposed by Salpeter and Hoyle.
Salpeter recognised that this had to be at least a two step cycle. Hoyle proposed
that Reaction (53) must be resonant reactions in order to account for the amount
of 12C' present in the Universe. In particular, he postulated the existence of an
excited energy level of the '2C' for allowing the resonant reaction to occur. In
a landmark discovery of nuclear astrophysics, the existence of this energy level
was confirmed experimentally by W. A. Fowler. In few words, two *He fuse to
produce a highly unstable  Be (decay time 2.6 x 10~ !9 5) that, before decaying,
captures another *He to produce an excited '?C*. As a final reaction, very
few times the excited carbon nucleus '?C* decays by means of two forbidden
radiative transitions to become '2C'; but, by far, the most probable end of 2C*
is to split back in three helium nuclei. Reactions (52) and (53) are resonant and
endothermic, and the remaining (54) is by far more exothermic. Reactions (55)-
(57) are other important reactions during the helium burning stage.
The energy release due to the 3« cycle is

2y 44.027
3, = 5.09 x 101 st exp ( — T > ergg ts ! (58)
8

where T3 = T/10°K and Y is the abundance of *He.
A comparison of the energy release of the main nuclear reaction cycles (PP,
CNO, and 3«) is presented in Figure (6).

7. The Equations of Structure

The full set of partial differential equations of stellar evolution is

Or 1

oM, dmrr2p’ (59)

oP GM,
oM, Admrt’ (60)

oL, oS
BIVA —en—el,—TE, (61)
orT _ GMTTV' (62)

OM, — 4mriP

Two boundary conditions are imposed at the centre (M, = 0), we have r = 0 and
L, = 0. The others are set at the outermost layers (M, = M), where T = Ty,
and P = Puy; Turm and Py, are the temperature (usually the effective one)
and the total pressure at the stellar atmosphere.

In order to find the value of the temperature gradient V we have to consider
its stability against convection. Let us consider the Schwarzschild criterium
that states that if V,,g < Vua, V = Viyud, if Viwd > Vad, V = Vieonw, Where

Vad = (gﬁig)S'

Its name is due that sometimes * He nuclei are referred to as o particles.
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Figure 6. The rates of energy release due to the Proton-Proton,
Carbon-Nitrogen-Oxygen, and Triple Alpha cycles (PP, CNO, and
3o respectively). For the PP and CNO cycles we assumed X = 1,
p=1gem 3, and Xcny = 0.01. For the case of the 3a we considered
Y =1, p=10* gem 2 which are typical values for helium burning.
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Here we have written the system of equations as a function of M,. This is
usually referred to as Lagrangian variable, in contrast to the Eulerian variable r.
This is more adequate because of numerical reasons.

As the constitutive physics is strongly dependent on the chemical compo-
sition, it is necessary to simultaneously solve the equations for the evolution of
the abundances.

7.1. Solution of the Structure Equations

Computing stellar evolution is possible only by means of numerical simulations.
The method usually employed for such purpose has been devised by Louis Henyey
(Henyey et al., 1964) in the end of fifties. Henyey proposed to employ a finite
differences method with an implicit algorithm, writing temporal derivatives as
backward differences. This has been masterfully described by Kippenhahn et al.
(1967). The key advantage of such algorithm compared to others is its numerical
stability. With this method it is possible to handle stellar models with few
thousand of concentric shells and to compute its evolution even with an average
personal computer.

7.2. Solution of the Chemical Evolution Equations

When computing stellar models, one possibility is to study them paying special
attention to the evolution. In this case it may be enough to consider a nuclear
reaction network (the name usually employed when referring to the system of
differential equations that provide the chemical evolution of the stellar interior)
with few tens of carefully chosen isotopes. When models are constructed to be
applied to study stellar oscillations this strategy is adequate.

On the contrary, if we construct stellar models to compute the nucleosyn-
thesis products, things are far harder. In this case, the number of isotopes to be
considered may be of thousands and the number of reactions connecting them
can be an order of magnitude larger. A key property of these reaction networks
is that they include reaction rates that operate on very disparate timescales,
making the problem very stiff. A classical example of this difficulty is in the so-
lution of the detailed reaction network of PP cycle when we consider deuterium
explicitly, the rates of Reactions (31) and (32) differ in a factor of 10'®. The
implicit method of Bader & Deuflhard is strongly recommended (Press et al.,
1992). A very nice account of the difficulties of nucleosynthesis calculations can
be found in Timmes (1999).

When nuclear burning occurs in convective layers, convective currents have
a characteristic timescale by far shorter than that of nuclear reactions. Thus, the
entire convective zone is continuously mixed and burned. An extreme assumption
is to consider that mixing is infinitely fast (instantaneous mixing). So, the entire
convective zone remains homogeneous. Also, convective boundaries use to move,
and this has to be considered in detail. Instantaneous mixing is not valid during
the latest stages of massive stellar evolution close to the final core collapse.
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8. The Evolution of Stars

8.1. The Pre-Main Sequence of Low Mass Stars

Here we describe the stage usually called Pre-MS or PMS. We shall restrict
ourselves to the case of low mass objects. For the case of higher mass objects
the problem is far more complex.

Essentially, the PMS is the stage in which stars evolve from the initial es-
tablishment of hydrostatic equilibrium up to core hydrogen burning ignition. At
the very beginning of the PMS the stellar matter is so opaque that the object
is entirely convective up to its photosphere. This kind of structure is said to
correspond to the Hayashi Line along which the stars initially evolve (see, e.g.,
Kippenhahn & Weigert 1990). For a given mass value, the Hayashi line is a very
steep line that defines the red edge of the region of the HRD at which stars can be
located. To the right side of this line hydrostatic equilibrium is not possible. In
this initial stage the stellar structure is well approximated by a polytropic sphere
with n=3/2 (see § 3.1). The object shines thanks to the release of gravitational
energy due to contraction. This effect increases the internal temperature which,
in turn, makes the opacity to decrease (see Figure (5)) and the centre of the
star becomes radiative. So, the evolutionary track departs from the Hayashi line
bending in the HRD to higher effective temperatures.

Here we have just introduced the fundamental concept of evolutionary track.
This is generally referred to the path followed by a star in the HRD during its
evolution'.

The PMS ends when hydrogen burning establishes and the star arrives to
the quite inappropriately called Zero Age MS (or simply ZAMS). These ages,
defined in this case when the star has burned 1% of the original hydrogen content
are given in Table (1). A typical PMS evolution on the HRD is presented in
Figure (7). These tracks have been calculated with our evolutionary code for
this lecture notes (Benvenuto & De Vito, 2003)

8.2. The Evolution of Low Mass Stars

Usually we call star an object that at some stage of its evolution shines with a
luminosity fully provided by nuclear reactions. For Solar composition, stars have
masses M > 0.08M . Sub-stellar objects with 0.016M, < M < 0.08 M release
energy by nuclear reactions and gravitational contraction. These are the brown
dwarfs. For even lower masses, M < 0.016M,, temperature is so low that the
objects cannot undergo any nuclear reaction and are fed only by gravitational
contraction (Burrows et al., 1995). These are the gaseous giant planets. For sub-
stellar objects usually it is very important the burning of primordial deuterium
by Reaction (32) but the PP cycle is not completed because the higher Coulomb
barrier inhibits the occurrence of Reaction (33).

In Figure (8) (Sackmann et al., 1993) we show the evolution of our Sun.
Its PMS is denoted by a dashed line and the object reaches the ZAMS at point

100f course, it is possible to call this way the path that describe the change of other quantities,
e.g., the evolution of the central conditions of the star: LogT. versus Log p., but this is not
the standard case.
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tracks and are followed up to the onset of core hydrogen burning. Each
curve is labelled with the corresponding mass given in solar units. These
tracks have been computed by ourselves employing our stellar code.

29



30 Omar G. Benvenuto

Table 1. Conditions at the end of the Pre-MS. Columns indicate the
mass of the object in solar units, the age in million years and the decimal
logarithms of the effective temperature in Kelvins, the luminosity in
solar units, the central temperature in Kelvins and the central density

in g em 3.

M Age  LogT.;;r LogL LogT1. Logp.
0.40 10244 3.557 -1.657  6.906  1.812
0.60 1391 3.571 -1.241  6.968  1.824
0.80 5222 3.641 -0.686  7.051  1.857
1.00 3319 3.694 -0.288  7.101  1.855
1.25 117.2 3.765 0.278 7.205  1.909
1.50 734 3.837 0.646 7.260 1.893
1.75 493 3.900 0.937 7.296  1.850
2.00 326 3.948 1177 7.320 1.793
250 198 4.021 1.569 7.353  1.683
3.00 111 4.078 1.881 7.376  1.586

A. There, the star is burning hydrogen in its radiative core. B corresponds to
the present Sun and E denotes the core hydrogen exhaustion that corresponds
to the age of 10.91 Gyr. At that moment the star leaves the MS and starts
to undergo hydrogen shell burning that dominates its energy balance, evolves
to lower effective temperatures and develops a deep outer convective zone, as-
cending on the Red Giant Branch (or RGB, points F to H). The stellar core is
strongly degenerate and undergoes heavy neutrino losses that make the maxi-
mum temperature to be located off-centre. Helium is suddenly ignited at point
H on the track when the hottest stellar layers reach 7z ~ 1. These layers are
strongly degenerate, which makes the pressure of matter to be weakly depen-
dent on temperature. In these conditions, helium ignition is initially unstable.
This is the so-called helium flash. Helium burning ignition leads to an energy
release that increases the temperature!'! but, since the EOS is weakly dependent
on temperature, the structure is only slightly modified but nuclear reactions are
strongly accelerated. The flash progressively removes the degeneracy and the
burning tends to stabilise. On a short timescale the object finds a new, long
lived evolutionary stage called horizontal branch (or HB, corresponding to point
K on the track). Helium is burned stably on the HB and after its exhaustion on
the core, it develops a helium shell burning and evolves to the red region in the
HRD again, now on the Asymptotic Giant Branch or AGB. At these conditions
the star begins simultaneously to suffer mass loss and thermal pulses. Thermal
pulses are due to the interaction between the shells burning hydrogen and helium
and have a timescale of =~ 10° y, far longer than the timescale in which a sound
wave goes across the star. When the star has lost a large amount of mass, starts
to evolve bluewards to become a carbon-oxygen WD star of 0.541 M.

1At these conditions the pressure is dominated by degenerate, non-relativistic electrons while
the specific heat is dominated by the non-degenerate gas of nuclei.
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Figure 9.  The structure and composition of the present Sun. The
values used for scaling are T, = 1.54 x 10" K and p, = 162 g cm—3; also
L = Ls and R = R;. These results have been computed by ourselves
employing our stellar code.

It is interesting to discuss the present structure of the Sun. Its main char-
acteristics are shown in Figure (9). Most of the luminosity (dominated by the
PP cycle, although the CNO reactions give some contribution) is released in the
inner 40% of mass. Remarkably, the profiles of temperature, density and hydro-
gen and helium abundances are monotonous. However, this is not the case for
the profile of *He abundance (enhanced by a factor of 100). This is due to the
differences in the Coulomb barriers of the Reactions (31) and (32), compared to
those occurring in the case of Reactions (33) and (34). In the core of the Sun
the temperature is high enough to produce and burn > He. However this is not
the case in outer layers; there  He burning is not so efficient.

8.3. The Evolution of Intermediate Mass Stars

Usually, we consider as intermediate mass stars those objects that ignite helium
in non-degenerate conditions (they do not suffer a helium flash) and develop a
degenerate carbon oxygen core after helium core exhaustion. This sets the mass
interval for these objects in the range of 1.8 — 2.2 < M /Mg < 8 — 9 (Chiosi,
1997).

Typical tracks of intermediate mass stars are shown in Figure (10) and some
relevant characteristics of the models are presented in Table (2).

The ZAMS for stars in this range of masses is at temperatures appreciably
higher than those of lower mass objects. As consequence, they have radiative
outer layers while the deep interior has to be convective to transport the large
amount of energy released by the CNO cycle. Due to the occurrence of convection
in the deep interior, the stars burn the available hydrogen in the entire convective
zone.
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The meaning of points A-I given in Table (2) is presented in Figure (11) for
the case of a 4M, object. This is valid for the rest of the evolutionary tracks
presented in this subsection; notice that all of them have a similar morphology.
Evolution begins at point A that corresponds to the ZAMS, where we set age
to zero. Point B corresponds to the minimum effective temperature during core
hydrogen burning MS while point C denotes the end of the latter. From that
stage on, stars develop a shell burning hydrogen and the evolutionary track goes
across the HRD in a relatively short timescale (as compared to MS duration)
becoming red giant (point D). Because of the relative shortness of this timescale,
finding stars at this stage is not frequent and because of this reason this region
of the HRD is known as the Hertzsprung gap. The star begins to develop a deep
outer convective zone while the core has not reached temperatures of hundred
million Kelvins, necessary to ignite helium, yet. Such ignition occurs when the
stars reach a luminosity maximum (point E). Remarkably, the rise of another
source of energy forces the stars to rearrange to a structure that evolves towards
lower luminosities!? (up to point F). Most of core helium is burnt out in convec-
tive conditions during a loop (from points F to H) in which the star spends an
appreciable timescale. At these conditions, helium core is almost exhausted and
the star develops a deep convective zone and evolves towards higher luminosities
up to the end of the calculation (point I). This is consequence of the outward
motion of the shells burning hydrogen and helium.

After these stages, while the objects are still in the red part of the HRD, the
mentioned shells become closer and closer forcing the stars to undergo thermal
pulses in a way similar as mentioned for the case of low mass objects. However, in
this case the timescale of pulses is at least an order of magnitude shorter (10* y).
Simultaneously, during thermal pulses, stars undergo mass loss. When most of
the hydrogen rich envelope has been lost, the star evolves on a short timescale
(comparable to that of a thermal pulse) to a compact structure reaching effective
temperatures much higher than those corresponding to the ZAMS at the same
range of luminosities. Then, the evolutionary track star bends down starting the
pre-WD stage. At this moment the star is composed by a carbon-oxygen core
surrounded by a helium shell that has ~ 1% of the stellar mass, and an even less
massive outermost hydrogen layer.

8.4. The Evolution of White Dwarfs

As discussed above, WDs represent the final state of evolution of low and inter-
mediate mass stars. This kind of objects is very important for asteroseismology
since it is well known that they undergo non-radial pulsations. Because of this
reason, we present some characteristics of these objects when considered as con-
sequence of stellar evolution. Here we shall not discuss the WD composition
in details but consider a very simple case to show the general trend of their
evolution.

In Figure (12) we show a typical set of cooling tracks of WDs for different
masses from rather low (0.3M/) to high (1.2M) values. Here we have assumed
that all models have the same homogeneous chemical composition of carbon and

2This occurs in a similar way to the case of low mass objects at the onset of the helium flash.
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Figure10.  Typical HRD for the case of intermediate mass, Solar com-

position stars. The masses corresponding to each evolutionary tracks,
shown in solid blue lines, are indicated in solar units. Lines of con-
stant radii are shown in thin red lines. On the tracks, dots indicate
age intervals. These are of 5 x 10" yr for 3Mp), of 2 x 107 yr for 4M,
and of 107 yr for 5M and 6M. These tracks have been computed by
ourselves employing our stellar code.
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Table 2. Selected stages of evolution of the intermediate mass stars
presented in Figure (10). Columns indicate the point on the respective
track, the age in million years, the decimal logarithms of the luminosity
in solar units, effective temperature and central temperature in Kelvins,
and central density in g em 2. The last two columns present the central
abundances of hydrogen and helium. For the position of the points A-I
on the tracks, see Figure (11).
Point Age Log L LogT.;s LogT. Logp. X, Y.
A 0.00 1.885 4.093 7.380 1.635 0.7293 0.2568
B 351.75  2.069 3.976 7.462 1.805 0.0417 0.9453
C 359.46  2.157 4.025 7.533 2.207  0.0003 0.9867
3M, D 37044  1.722 3.712 7.750 4.040 0.0000 0.9871
E 374.48  2.570 3.632 8.042 4.819 0.0000 0.9854
F 389.24 1.808 3.702 8.059 4.448  0.0000 0.8937
G 476.99  1.909 3.701 8.114 4.304 0.0000 0.3333
H 519.99  2.002 3.685 8.231 4.496  0.0000 0.0080
I 523.38  2.933 3.602 8.078 5.980  0.0000 0.0000
Point Age LogL LogTesy LogT. Logp. X, Y.
A 0.00 2.356 4.176 7.413 1.479  0.7294 0.2566
B 159.32  2.576 4.061 7.491 1.620 0.0485 0.9386
C 163.39  2.656 4.108 7.573 2.035 0.0003 0.9868
4M, D 167.08  2.207 3.697 7.818 3.909 0.0000 0.9871
E 168.07 2.887 3.623 8.075 4.468 0.0000 0.9845
F 177.83  2.333 3.681 8.100 4.120  0.0000 0.7969
G 194.75  2.510 3.708 8.142 4.081 0.0000 0.3384
H 213.84 2.439 3.675 8.239 4.251  0.0000 0.0215
I 214.71  3.200 3.594 8.270 5.713  0.0000 0.0000
Point Age LogL LogTesy LogT. Logp. X, Y.
A 0.00 2.705 4.236 7.435 1.359  0.7369 0.2492
B 92.13 2957 4.126 7.517 1.494 0.0466 0.9405
C 94.39  3.026 4.169 7.599 1.956  0.0001 0.9870
5Ms D 96.03  2.602 3.682 7.876 3.833  0.0000 0.9871
E 96.46  3.191 3.611 8.095 4.160  0.0000 0.9817
F 102.57  2.735 3.663 8.128 3.921  0.0000 0.7155
G 105.49 2.994 3.828 8.142 3.911 0.0000 0.5459
H 115.84 2.863 3.649 8.303 4.222  0.0000 0.0038
I 118.37  3.602 3.575 8.380 5.777  0.0000 0.0000
Point Age LogL LogT.sy Log1. Logp. X, Y.
A 0.00  2.988 4.282 7.454 1.259  0.7284 0.2576
B 59.70  3.255 4.176 7.536 1.394 0.0469 0.9402
C 61.22 3.321 4.218 7.630 1.823  0.0002 0.9869
6M D 62.04 2913 3.668 7.927 3.769  0.0000 0.9871
© E 62.27 3.449 3.600 8.110 3.978  0.0000 0.9805
F 66.32 3.068 3.647 8.151 3.762  0.0000 0.6585
G 68.25  3.360 3.919 8.168 3.757  0.0000 0.4755
H 73.50 3.182 3.632 8.323 4.078  0.0000 0.0044
I 7481 3.912 3.557 8.460 5.927  0.0000 0.0000
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Figure 11.  The track corresponding to the 4M object, indicating
the position of the points A-I on the tracks presented in Figure (10)
whose characteristics are given in Table (2).

oxygen (X. = X, = 0.5) representative of the case of intermediate mass WDs and
neglected the presence of lighter elements in their outer layers. At present it is
currently accepted that low mass WDs (M < 0.4M) are due to binary evolution
and should be made up by helium, while the most massive ones (M = 1.0M)
are expected to be composed by oxygen, neon and magnesium. In Figure (13)
we show the luminosity evolution of the same set of models. Ages have been set
to zero at the beginning of the tracks shown in Figure (12); so, they correspond
only to cooling evolution.

WDs are simple and well understood objects; so, they can be considered
as cosmic clocks for the stellar population where they belong. Also, the most
massive objects are expected to undergo crystallization. This is expected to
occur when the Coulomb interactions are strong enough. For a one component
plasma it occurs when I' &2 171, where

(Ze)°

=Ty

(63)

Here Z is the charge of the ions. and (r;) is the ionic mean distance. T is the
ratio between Coulomb and thermal energy. Crystallization changes the specific
heat of the WD interior and even releases a latent heat. This has some impact
on the cooling evolution of these objects.
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Figure 12. The evolutionary tracks for carbon-oxygen WDs. We as-
sumed an homogeneous composition of X. = X, = 0.5. Solid black
lines are labelled with their corresponding masses given in solar units.
For comparison, we show the ZAMS and constant radii lines. Notice
that, as it is shown in Figure (4), the larger the mass the smaller the
radius. After reaching the maximum luminosity in each track, the WD
cools down with decreasing radius. This is especially noticeable for
the case of low mass objects and nicely accounts for the apparent dis-
crepancy between the theoretical mass radius relation for cold WDs and
observations. These tracks have been computed by ourselves employing
our stellar code.
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Figure 13.  The evolution of the luminosity for the WDs considered
in Figure (12). Types of lines are labelled with the corresponding mass
values, given in solar units. The zero age has been set at the beginning
of the tracks shown in Figure (12); so, the evolutionary scale corre-
sponds only to the cooling evolution of the objects. Crystallization is
not included.

8.5. The Evolution of Massive Stars

Usually massive stars refer to objects that end their lives in a catastrophic way
by an implosion and (at least in some cases) a subsequent supernova explosion.
Although they undergo strong mass loss, at the end of their lives they have masses
well above the Chandrasekhar limit. Thus these stars cannot end their lives as
WDs. For this to occur it is usually considered that their initial masses should be
M > 8—9M. These objects are capable to undergo all the main thermonuclear
burning cycles: hydrogen, helium, carbon, neon, oxygen, and silicon. Due to
their high mass values they are very bright, allowing them to be detected far
from us.

There are few facts that make the evolution of massive stars appreciably
uncertain. Perhaps the most important is that massive stars are not numerous,
and due to their short lives they are difficult to observe. Another relevant sources
of uncertainty are mass loss, overshooting and rotation.

It is well known that massive stars undergo heavy mass loss. This is de-
tectable in detailed spectroscopic observations from which we can deduce the
value of the mass loss rate M, which is rather uncertain. If 7 is the timescale
of stellar lives and we multiply it by M we find that M7 is comparable to M.
In other words, massive stars lose a non-negligible portion of their masses. This
brings the possibility to detect material that has already undergone nuclear re-
actions emerging at their photospheres.

Overshooting is another phenomenon usually considered in massive stars.
The physical reason for its occurrence is simple. Let us imagine, as discussed
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above, that convection is the upwards and downwards motion of bubbles. It
can be shown that when bubbles reach the position of the convective boundary
indicated by the Schwarzschild criterium what goes to zero is not the velocity but
the acceleration. So, at that position the bubble begins to brake down, moving
beyond the classical boundary. This is still an open problem that has been not
fully solved. So, astronomers use to consider overshooting in a parametric way
in order to fit observational data, in particular the width of the upper MS band
(sacrificing predictivity). The new parameter is av,, which provides the extension
oy of the convective zone beyond the standard edge as lo, = qop Hp.

Perhaps the most difficult phenomenon to treat properly is rotation. Rota-
tion is fundamental in binary systems since orbital angular momentum can be
transferred to stars by mass exchange making them to be spin up'®. But it is
also important for isolated objects, especially for massive stars that are known
since long ago to be fast rotators (their rotation rate can be a non-negligible frac-
tion of the breakup velocity). Rotation not only makes the figure of equilibrium
to depart from spherical shape but more importantly, it gives rise to currents
of meridional circulation that advect material, changing the composition of the
stellar interior in a way that does not occur in non-rotating objects. On Earth,
rotation is responsible for the existence of sea currents that advect heat and
modify the weather in a quite noticeable way (due to the Gulf Current, Norway
is not so cold as Alaska or Siberia). The problem is that the equations to handle
shellular rotation (Zahn, 1992) (rotation velocity constant on isobars'4) are of
fourth order in space, making it very difficult from a numerical point of view.

In Figure (14) (Maeder & Meynet, 1987) we show a typical theoretical upper
HRD with the evolution of a set of massive stars. The MS widens for M ~ 40M,
while for even more massive objects it narrows because of heavy mass loss and
overshooting. After hydrogen core exhaustion, while stars with M < 40M;, burn
helium as red objects, those more massive do it in the blue region at the left of
the ZAMS. They are located there since they have lost a large fraction of the
hydrogen rich outer layers, becoming Wolf-Rayet stars.

The evolution of the internal structure of the 60M object (Maeder &
Meynet, 1987) is presented in Figure (15) where it can be seen the changes
of the surface chemical composition as consequence of the interplay of convec-
tion and mass loss. This is very important, since these abundances should be in
agreement with the predictions of the CNO cycle.

In Table (3) we give some important quantities that describe the evolution of
these massive stars. As in the previous ranges of masses, the main characteristic
is that, since luminosity grows with mass faster than linear, and the fuel available
goes with the mass, the timescale of evolution is a steep decreasing function of
the stellar mass.

13This is the standard mechanism considered for the existence of recycled millisecond pulsars.

This is considered because the diffusion coefficient of angular momentum is expected to be
strongly anisotropic: it should be very large in the direction of isobars and much smaller in
vertical direction. See, e.g., Maeder (2009) for further details.
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Figure 14.  Typical upper HRD for Solar composition massive stars
with mass loss and overshooting. Hatched areas indicate hydrogen core
burning stage (MS band), and core helium burning as red objects for
M < 40M, but as blue for more massive ones (to the left of the ZAMS).
Here the parameter of MLT is «,,;; = 1.5 and for overshooting it has
been assumed a,, = 0.3. For further details see text. Reprinted from
Maeder & Meynet, A& A, 182, 243, reproduced with permission ©ESO.
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Figure 15.  The internal evolution of a 60M, object subject to mass
loss and overshooting. Tilted hatch indicates active nuclear burning,
vertical lines denote the presence of a gradient of chemical composition,
whereas curls depict convective zones. The upper solid line indicates
the mass coordinate of the photosphere. Notice that due to mass loss,
nuclearly processed material emerges to the stellar surface and should
be detected by observations. Reprinted from Maeder & Meynet, A&A,
182, 243, reproduced with permission ©ESO.
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Table 3.

Omar G. Benvenuto

Selected stages of evolution of the massive stars presented
in Figures (14) and (15). Columns indicate different important evolu-
tionary stages: A, B, C, and D correspond to the conditions near the
ZAMS, hydrogen core exhaustion, core helium ignition, and its exhaus-
tion, respectively. We give the age in million years, the mass in solar
units, the logarithm of the mass loss rate in solar masses per year, the
logarithm of the luminosity in solar units, the logarithm of the effective
temperature given in Kelvins, and the central abundances of hydrogen,
helium and carbon (Y C.).

20M,
Point  Age M LogM LogL LogTey X, Y, YC.,
A 024 19996 -7.844 4643 4552 0.692 0.288 0.0001
B 879 19.098 -6.448 5.064  4.438  0.000 0.980 0.0002
C 8.82 19.084 -6.085 5.147  3.980  0.000 0.979 0.0007
D 1006 14.311 -5.280 5339  3.601  0.000 0.000 0.1167
40M,,
Point Age M  LogM LogL LogT.; X Y, YC,
A 021 39.899 -6.345 5374 4652 0.684 0295 0.0001
B 479 32357 -5.286 5.679  4.375  0.000 0.980 0.0002
C 480 31.777 -3.924 5825  3.673  0.000 0.976 0.0008
D 543 9975 -4553 5404 5268  0.000 0.000 0.0977
60M,
Point Age M LogM LogL LogTe;r X Y. Y,
A 017 59.757 -5.864 5731 4693 0.685 0.295 0.0001
B 371 42999 -5.157 5999 458  0.000 0.981 0.0002
C 372 42959 -5.000 6.034  4.267  0.000 0.980 0.0003
D 432 21.384 -4553 5928 5313  0.000 0.000 0.0432
120M,
Point Age M LogM LogL LogT.; X Y, YC,
A 012 119456 -5.398 6.254 4.739 0.685 0.294 0.0001
B 292 80916 -5114 6.449 4720  0.000 0.980 0.0002
C 294 80.724 -4551 6.511  4.503  0.000 0.979 0.0005
D 345 64.019 -4553 6.552  5.292  0.000 0.000 0.0124
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9. Concluding Remarks

In these lectures we have presented a brief description of the most important
characteristics of stellar evolution in order to provide a basis for the understand-
ing of the properties of the most frequently studied stellar pulsators. In doing so,
we have made a description of the main physical ingredients that play a central
role in stars and then, the fundamental characteristics of the process of stellar
evolution.

It is important to remark that in this work we have not been able to refer
to many important processes that occur in stars, that are relevant for a correct
understanding of these objects. For example we did not describe semiconvection
and diffusion that are also important for the determination of the internal chem-
ical profiles. We have only made a brief reference to binary evolution and did
not quote the neutron capture processes that are considered as responsible for
the existence of elements heavier than those of the iron peak in Nature. Most of
them are described in the textbooks cited in the Introduction. Also, we did not
discuss the solar neutrino emission.

We hope that this work will be useful for the reader that intends to enter
in the exciting realm of stellar astronomy.

The author wants to acknowledge the SOC of this School for inviting him
to deliver these lectures. Also, he wants to acknowledge Dr. Gabriel Ferrero for
his help in the preparation of Figure (1).

This work has made use of the VizieR catalogue access tool, CDS, Stras-
bourg, France (DOI: 10.26093 /cds/vizier). The original description of the VizieR
service was published in 2000, A&AS 143, 23.
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Abstract.

We present the problem of low amplitude, adiabatic non-radial
oscillations starting from first principles. We describe the perturba-
tions imposed to the models, assuming that its non-perturbed struc-
ture is spherical. Then, we restrict ourselves to the case of adiabatic
oscillations, presenting the equations written in terms of the Dziem-
bowski variables. We describe a numerical method for solving these
equations based on finite differences and apply it for the simple case
of polytropic spheres. A computer code based on this algorithm is
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1. Introduction

In this lecture we shall present the problem of low amplitude, adiabatic
non-radial stellar oscillations starting from first principles. We shall derive
the equations that describe these oscillations and also present a numerical
scheme to solve them. Because these are low amplitude oscillations, they
are linear in the amplitude of the perturbation but non-linear with respect
to the eigenfrequency. This is a classical problem treated in the books
presented by Cox (1980) and Unno et al. (1989) and more recently by
Aerts et al. (2010).

45



46 Omar G. Benvenuto

The remainder of this work is organised as follows. In Section (2),
starting from first principles, we derive the equations of non-radial oscil-
lations corresponding to a non-rotating model in hydrostatic and thermal
equilibrium. In Section (3) we restrict ourselves to the case of adiabatic
oscillations and write the equations in the Dziembowski variables. Then, in
Section (4) we present a finite differences algorithm devised to solve these
equations including some comments on how to construct an initial approx-
imate solution to be relaxed by iterations. In Section (5) we apply this
algorithm to the particularly simple case of polytropic spheres. Finally, in
Section (6) we give some general comments about the applicability of this
method to the case of non-adiabatic oscillations and also to compute the
oscillations of realistic stellar models.

2. The Equations of Oscillations

Let us begin by writing the equations of continuity (1), of Euler (2) (we
neglect viscous stress), conservation of energy (3), Laplace (4), and energy

flux (5)

T V. (pt) =0, (1)

p(%+ﬁ ﬁ)ﬁz—vp—pwp, (2)
T(gmﬁ S=—plente) - V. F, 3)
V20 = 47 G, (4)

F=_—KVT = —;L%;T?’ﬁT (5)

The symbols have their usual meaning: p is the density, v is the velocity,
P is the pressure, ® is the gravitational potential, G is the gravitational
constant, T is the temperature, S is the entropy, £, (&,) is the energy

release (loss) due to nuclear reactions (neutrino emission), F' is the energy
flux, K is the conductivity, a is the radiation constant, ¢ is the velocity of
light and & is the opacity. For simplicity here we shall ignore convection.

In the case of non-rotating objects in hydrostatic and thermal equilib-
rium these equations reduce to
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% = - r2 P (6)
dM,
dT = 47TT2p7 (7)
dL,
dr = 47TT2p(5n - 51/)7 (8)
ar _ 3kp 1 Ly 9)
dr — 4dac T3 4mr?’

where M, is the mass enclosed by a sphere of radius r and L, = 4nr?F is
the luminosity emerging from its surface.

There are two ways of considering perturbations to any attribute of
the stellar interior, these are the Eulerian and Lagrangian perturbations.
At a given point the attribute changes from fo(7) to f(7,t) (Equation 10)
due to an Eulerian perturbation

f(ﬁﬂ :fO(F)'I'f/(F?t)' (10)

If a portion of the star undergoes a displacement 5’: ¥ — 1y, the attribute
changes from fo(7) to f(7,t) due to a Lagrangian perturbation (Equa-
tion (11))

F(rt) = fol(ro) + 6./ (0, 1) (11)
These formulations are related by Equation (12)
OF(7t) = f(71) + £V fo(7). (12)

We shall consider that the non-perturbed structure is at rest, in hy-
drostatic and thermal equilibrium (so ¥ = 0) and write the perturbed
equations to the lowest order. These are

’

I s =
£ 4V =0 13
o TV (po®) =0, (13)

a_) o / = / [
poa—: FVE 4 VO 4 p VD, = 0, (14)
0 ’ - = 4 = =,

poToe (S +E950) = [p(en — )] V. F, (15)
V20 = 4nGyp, (16)
F = —K,NT - K'VT. (17)

If the non-perturbed structure is spherically symmetric, we have py =
po(r), Ty = To(r), ®g = Po(r), etc. We apply a perturbation considering
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that all quantities are proportional to exp (iot). Then, the operator %

can be replaced by io and the perturbations are written as 5: (&r,80,€p),
where the normal part is &, = (0,&p,&,). Also, it is convenient to define
the normal part of the gradient and the Laplacian operators as

- 1 o 1 0
V.= ;(07 %7 Slﬁ%)? (18)

2 _ 1 6009 (Gnol )L 2
VL_Tzsinzﬁ smﬁae smﬁae +0¢2 . (19)
(20)

It is straightforward to verify that the angular part of the equations
of motion are diagonal in the base of the spherical harmonics, defined as

2041 (0 — |m)!
i (0 |m])!

1/2
P0.0) = (1) | prtosoyeme g

where Pg|m|(cos 0) are the associated Legendre polynomials that fulfil the
differential equation

where 1 = cosf. Let us remind the fundamental property that spherical
harmonics are orthogonal and normalised

27 T
| ¥in0.0in0. 0 sin0d0as = 6,6, (23)

Let us write the perturbation as

£= |etmnatn g 20 Lo e (24

Applying it, together with the thermodynamic relation

op 1 oP pT
? TP —VachSS (25)
where
dlogT
ad = , 2
Vad Jlog P | (26)
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and
Odlog P
= 2
dlogp |4 (27)
we find the equations of motion
1dP' g 5 d<I>
o dr pczP + (N? = 0%)& + gVad 55, (28
1d 1dnP L2\ P £(£+1) , pT
T_zd_( ) Fl —dT 5 + (1 — ;) pcg — 022 o = Vad_557 (29)
1d /[ ,d® 00+ 1) P N? p°T
il el ® _ 4r e ) =4 w—
2d( d) = G(pc§+g§) WGVd 55(
dT’ dT
K— = —F K —,(31
dr dr (31)
: B A O (e+1)
iopT6S = [p(en — )] — ﬁﬁ(r F) - - KT (32)
There,
2 c
L; =00+ 1)T—;, (33)
1 dln P dlnp

are the Lamb and Brunt-Viisila frequencies, respectively. Also
¢ = PT/p is the adiabatic velocity of sound, and g = GM,/r? is the
acceleration of gravity.

3. The Adiabatic Oscillations

We shall restrict ourselves to the case of adiabatic oscillations. So, we
assume that 05 = 0 and the equations are

1dP' do’
4 L9 p (N +— =0, 35
pdr+p02 +( )€+d (35)
1d,, 1 dlnP LINP  e+1) .
T—zg(T 5}«) +F_1 dT 5 ‘I‘ (1—_) p02 0’27“2 (I) —0, (36)

1d [ ,d® £(€+1) P N? N\
_2d_( 2—) ' — 4nG (pc +7§7«) =0. (37)

2
dr T 2
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If we neglect the perturbations on the gravitational potential (Cowling
approximation), it is possible to make a simple qualitative analysis usually
called “Local Analysis”. Let us assume that the coefficients of the oscillation
equations are far smoother than the eigenfunctions. If we assume that they
are proportional to exp (ik,r), it can be shown that

(0~ 13)(o® = N
202 ’

kr = (38)

For the mode to be oscillating, it has to fulfil 0 > L2 and o? > N?, or
0? < L? and 0 < N?, see below, Figure (8).

Let us define the variables
, 1 /P , I 1dd
ylzg; yzz—(—+<1>);y3=—<1>;y4=——- (39)
r gr\ p
These correspond to

’

/ / d(b
& =1y P =pgr(ye —uy1); © = grys; o = I (40)

Then, we arrive to the Dziembowski’s form of the equations of adiabatic
oscillation

dy e+
U TR e T T
d
=B = (O = Ay 4+ (A" = U+ 1)yo — A"y, (42)
dys
s _(1- 4
v = (L= U)ys+ps, (43)
d
x—dy; = UA™ 1 + UVyys + {W +1)-U Vg} ys = Ua. (44)

Here there appear the auxiliary variables that describe the effects of
stellar structure on the oscillations and also the dimensionless frequency.
These are
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V ldin P g

-
= - = —— _ 4
Yo I, Tydinr ¢’ (45)
din M,  4mpr?
= = 4
v din r M, (46)
3
r M
o= () (ir) "
r ldin P dnp
A= —pA="N2— - 1
" g Iydinr dinr’ (48)
R3
w2 = Uzm. (49)

The inner boundary conditions can be found taking into account that
V —3,U—0, A* — 0. The conditions are

CLw?
1€ =y =0, (50)
byy —ys = 0. (51)

The other two equations necessary to close the system are imposed on
the outer layers of the star. There we have V, — V,(z = 1); U — 0;
A* — A*(x =1). The conditions are

(0+1)ys —ya =0, (52)
QIR
{1 + (W; D, 1) %]yg _0. (53)

Due to the linearity of these equations with respect to the dependent
variables y;, they do not provide the amplitude of the oscillations. Then,
we have to add an arbitrary normalisation condition that is usually taken
at the stellar surface as y(r = R) = 1.

4. A Finite Differences Method of Solution

Let us now consider a method for solving these equations. This has been
presented by Corsico & Benvenuto (2002) and is a generalisation of the
scheme presented by Kippenhahn et al. (1967) to compute stellar evolution.
The equations of low amplitude, adiabatic non-radial oscillations have the
form
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dy; .
(1, U2, U3, Uas ), — 1.4 54
I = [ily1, Y2, y3, ya, w) [ (54)

We shall divide the star in several concentric layers and write these
equations in finite differences. We shall define the values of the dependent
variables as y;; where the first subscript indicates the variable and the
second denotes the point at which it is evaluated. Among the variety of
possible ways to adopt (for further details see, e.g., Press et al. 1992), we
shall employ

i _ Yijg+1 — Yiy A
Gi = — [ YijrlsY241: Y3543, Ya i 1H W) = 0;

Tj+1 — T;
1=1,---,4,9=1,--- ,N—1 (55)
where

ij T Yig
Yij+i = e 2_y L (56)

Also, the boundary conditions B; = 0,7 = 1,2,3 (outer) and C; =
0,7 =1,2 (inner) are written in a similar way.

Notice that these equations are local with respect to the eigenmodes,
since their derivatives are dependent on their values at the same point. The
eigenvalue is “non-local” in the sense that it is present in these equations
regardless where you are computing the derivatives.

To solve the difference equations let us employ a Newton-Raphson
technique. We have to provide an approximate solution of a particular os-
cillation mode and improve it by successive iterations. So, the algorithm is
devised to find the corrections necessary for the initially proposed solution
to be relaxed to an accurate solution of the mode, fully consistent with the
stellar structure of the non-perturbed model.

Notice that while the Equations (41)-(44) and (50)-(53) are linear in
the functions y;, they are non-linear with respect to the eigenfrequency.

0 y dw=—B; k=1,2,3 57
ayll yll_l_ 041 y41+ aw w ks y &y )y ( )
8G 8G BG‘
8y13 5y17j T 8y4 5 Yag + Oy1j+1 5y1’3+1 Tt Oya,j+1 5y4’3+1+ (58)
38% dw=—G); i=1,...,4 j=1,2,...,N -1,
OC, oC,, oC,,
oyin + -+ OYsn + —— dw=—Cp; m=1,2, (59)

01 N Oow

)

a?44,1\/
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These expressions can be written as a matrix equation. This is a sparse
matrix (most of the elements are zero) which, with the exception of the
first and last blocks, has the non-zero elements in blocks of four rows and
eight columns. The first block can be written as

- 9B dB; - - oB -
%%,1 cee %%,1 0 0 0 0 _é%} B
2 2 B 7 _ 2 _
Bs D 0 0 0 0y11 0 0 B,
OB . %5 g 0 0 0Y2,1 0 -2 _p
y1,1 Oya,1 ) oc1 aac"fl 0
oGt oGt oGl act Gt Y31 L RS e Ya2
Oy 7T 7T Oyar Oyiz Oy Oyspe . 5y4,1 = Fya,2 Ow . dw
. . . . . . 5y172 . . 1
0Y2,2 : :
: . : : : : | dy32 : : :
oG] oGt acl  aGl  aGh ’ _9Gi oG, Gl
L Oy11 "7 "7 Owa1 Oyin Oy Oyz | Oyae Ow .
(60)
Introducing the auxiliary vectors U, V, and W, their first seven com-
ponents are defined by
[ U Vi W]
[ 0y ] Uy Vo Wy
0Y2,1 : : :
0Y3.1 0Ya2
5y471 = : : : . ow (61)
5y172 . . . 1
5?42,2
| 5y372 ] : : :
| Uz Vi Wy |
and are the solution of the matrix equation
- 0B 9B1 A _ - B 9B 7
—%yévl e e e —%%,1 0 0 0 U1 Vl Wl 0 —gfﬁl _ Bl
2 2 __ 0Dy _
Ba T by 0 0 0 Uy Vo Ws 0 o By
OB; 9B; 0 0 . . . 0 —98s _p,
Dyt Dyas : : : ot 88(051
G aGt oGt aGt  aGhk . . . % —G%
Oy 7T 7T Oyar Oyiz Oy Oyspe . : : : = 9ya,2 Ow
: . : : : : - : st st :
oG o aGY  aGL  aGL oG} U, Vo W, — - _a_w4 _Gzll
L Oy11 Aya1  Oyra  Oyap  Oyza A - - L 4,2 .

The other components of the auxiliary vector are defined by
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YT U Vi Wois
Syre, Uss Vi Wiyt 01
1,j+1 — 49+1 45+1 45+1 . Sew (63)
0Yo j+1 Ugjrz Vagr2o Wyjio 1 ’
5y3,j+1 U4j+3 V4j+3 W4j+3

and computed by the expression

[ 8 oG aGi 7 i aGi
0 _9%%
L Oy v Byajr1 Oysjn UL Vs Wi OYya,j+1 1
of 96 les le) 4 4 4 <
2 Oy Oy Oysjiia U4j+1 VZUJrl W4j+1 _ Oya,j+1 2
o 83(;]3 88(;?3 88G§ Usgjra Vg2 Wiy _83(;% _
Y1 Ou2g41 9ysgp Uy; Vi Wy, a1
aj ac, ac, ac, 47+3 47+3 4743 B o, B
L 4 Oy Oypge1 Oyzgr1 L Oyat1 4
(64)
where we have employed the auxiliary vectors
i GGJ 0GJ 0GJ oG
o; = EI + U3 0 + Usj—o 0 + Usjr G (65)
Yaj Y14 Y2, Y3,
i 0GJ 0GJ 0GJ oG
gl="0 4y, + Vija + Vi1 o (66)
T w 7 8 7= 8 T Oy
W Y15 Y2,5 Y35
: les oG] oG]
— GJ + W4 W4 2 — + W4',1 —Z. (67)
7 J— a J— a ] a
Y14 Ya2,5 Y3,

With these expressions we reduce the information necessary to solve for
the corrections and find the last block of the matrix. This is written as

[ N1 a1t et et aa¥ ! N1 ]
: ayjl\iNl ay}z\le 8y]3\}]\71 3y;1\}1\71 : [ T [ N-1
GN-1 9G] aG] aa] aa] N-1 0Ya N—1 -7
2 Oy1, N Oya, N Oy3 N Oya N 2 OY1.N —fyévfl
V-1 oGt acyt et ecy!  N-1 5y ’ N1
3 Oy1, N Oya, N Oys N Oya, N 3 . 2N = ,7:]5\[
No1 aaNTt agNTt aeNTl agNTt N 0Y3 N — 1
Ay Oy, N Oy2 N Oyz N Oyy N 4 5y47N -
0 aCy 8C1 aCy 8Ch o0Cy Sw
Oy1 N Oya N Oys N Oy4,N Ow B i | Oy
0 it itel it o0,  aCy
B Ay1,~ dya,N Oys,n dy4,N dw
(68)

This expression allows us to find the corrections to the quantities cor-
responding to the central part of the model together with that for the
eigenfrequency. Employing them in Equations (61) and (63) backwards we
find the rest of the corrections that are applied to the proposed solution.

w — w+ dw, (69)

yi,j—>yi,j+5yi,j;izl,"',4;j:1,"',N (70)

-
—72
—73
—
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This completes an iteration that can be repeated up to when correc-
tions are small enough.

The way of solving for the modes and the eigenfrequency is similar to
the method we employ for computing binary stellar evolution. In this case,
the “non-local” quantity is the mass transfer rate, that is computed simul-
taneously with the structure of the donor star. For details see Benvenuto
& De Vito (2003).

4.1. Approximate Solution: the Discriminant

In order to look for the approximate solutions of the equations we have
to explore the frequency interval of interest. To do so, we relax one of
the physical boundary conditions (not the normalisation condition!) and
look for the solution of oscillation equations for a given frequency. If at
a given frequency the boundary condition is fulfilled, it corresponds to an
approximate eigenmode, otherwise not. So, we store in the memory of the
computer the approximate frequency and modes to be improved iteratively,
as described above.

4.2. On the Distribution of Mesh Points

One of the most difficult problems on finite difference solution of differential
equations is how to choose the distribution of mesh points. Here we cannot
present a detailed discussion of this issue but we shall give few general
comments.

Usually it is considered that a good description of a function is attained
if it is defined on a large number of mesh points. However, obviously,
this cannot be very large because both, the memory and the speed of
the computer are finite. For example, it can be assumed that a function is
well represented if between neighbouring mesh points it does not vary more
than (say) 1% of the maximum amplitude in all the interval. In general, the
solution of the equations of oscillations will have several nodes. Evidently,
these functions do need more mesh points to be well defined as compared
with the zoning necessary for stellar evolution. Thus, in general a good
zoning for stellar evolution calculations may be completely inadequate for
pulsation calculations.

5. A Particular Case: Polytropic Spheres

Let us now apply the above described numerical scheme to a particular

case. If the equation of state is of the form P = Kp'*'/" where K is a

constant, the structure of the object is a polytropic sphere. If we define

p = pA" and r = af where p. is the central density, 6 is the polytropic
_ (+1)K 1/n—1

function, and a? = o Pe , we find the Lane-Emden equation
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Figure 1.  The density profile for polytropic spheres of n = 3
and 4.
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The boundary conditions are 0(§ = 0) = 1, df/d|¢=p = 0 and the
surface is defined by 0(¢ = &) = 0. The radius of the sphere is R = «a&;
and its mass is given by M = 4wa®p.(—£2d0/dE)¢—¢. .

All the results shown below have been computed with the codes pro-
vided during the school', politro.for and NR_AD_School.for. First you
have to compile and execute politro.for. After choosing the polytropic
index the code will provide a file with the structure coefficients necessary
to compute the oscillations. NR_AD_School.for will ask you for the value
of ¢ of the oscillations and the range of values of the square of the dimen-
sionless frequency w?. Automatically this code will store the discriminant
and the modes in the required range.

Compilations and executions are fairly standard:
> gfortran xxx.for -o xxx
> /XXX

Analytical solutions of Equation (71) are known only for n=0, 1, and
5. Let us here consider the cases of n = 3 and 4 and that the gas has
an adiabatic coefficient I'; corresponding to the monoatomic case: 'y =
5/3. For this case, the density profiles are shown in Figure (1) and the
coefficients given by Equations (49) are shown in Figure (2).

Having available these coefficients, we can now compute the modes.
The first step is to calculate the discriminant. In this case we have em-
ployed Equation (52) for such purpose. The results are shown in Figure (3).

1 d ( 2d8) o )

'For interested readers, the codes can be obtained from the author upon request.
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Figure 2.  The coefficients given by Equations (45)-(48) that
describe the structure of the polytropic spheres of n = 3 and 4.
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Figure 3.  Discriminant for ¢ = 2 modes for polytropic spheres
of n =3 and 4.

The modes correspond to the frequencies at which the discriminant is zero.
Modes for both polytropic indices are shown in Figures (4)-(7).

Another interesting way to have a global view of the properties of the
modes is to employ the so-called “Propagation Diagram” which is based on
Equation (38). This is an useful tool for polytropes, but also for stellar
models in general. The Propagation Diagrams for the cases of polytropic
spheres of n = 3 and 4 are shown in Figure (8).

6. Conclusions

In this lecture we have presented the classical problem of low amplitude,
adiabatic non-radial pulsations. We have derived the equation of oscilla-
tions starting from first principles. The formulation is based on the Equa-
tions (41)-(44) and boundary conditions (50)-(53) written in the Dziem-
bowski variables.

In order to solve the equations we have presented a finite differences
scheme. In order to look for the modes we have relaxed one of the boundary
conditions and considered the values of this condition as a discriminant.
When it has the physical value, this frequency corresponds to an oscillation
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Figure 4.  The first p-modes and the f-mode (without nodes)
for a n = 3 polytropic sphere

mode. Then, we imposed the correct boundary condition and computed
the eigenmodes and eigenfrequencies by relaxation.

Although here we have restricted ourselves to the case of adiabatic
oscillations, the numerical scheme can be immediately generalised to the
case of non-adiabatic oscillations. In this case we have to handle not four
real but six complex first order differential equations.

In order to compute the modes of a simple stellar model, we applied it
to the case of polytropic spheres with indices n=3 and 4. This is straight-
forward and is the first step we recommend to do before trying to compute
the oscillatory modes of realistic stellar models. Of course, the numerical
scheme is adequate for such a purpose if you are able to provide the co-
efficients given by Equations (45)-(48). In the case of realistic models a
point to be taken with care is that the derivative of the density has to be
computed numerically since it is not provided by the equations of stellar
evolution.

The author wants to acknowledge the SOC of this School for inviting
him to deliver these lectures.
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Figure 5.  The first g-modes and the f-mode (without nodes)
for a n = 3 polytropic sphere. Here the normalisation condition
has been imposed at the centre of the model.
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Figure 6.  p-modes for a n = 4 polytropic sphere
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Figure 7. g-modes for a n = 4 polytropic sphere. Here the
normalisation condition has been imposed at the centre of the
model.
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Figure 8.  The propagation diagrams for ¢ = 2 oscillations for

polytropic spheres of n = 3 and 4 (corresponding to the left and
right panels respectively). The squares of the characteristic Lamb
(L¢, defined in Equation (33)) and Brunt-Vaiséla (N, defined in
Equation (34)) frequencies are represented with dashed and dash
dot lines respectively. Horizontal lines correspond to the frequen-
cies and filled dots represent the coordinates at which each mode
has a node in the y; eigenfunction. For the case of n = 3 there are
p-modes oscillating with nodes in the outer resonant cavity and
g-modes oscillating in the inner one, separated by the so-called
fundamental mode that has no node. On the contrary, for the
case of n = 4 there also exist the two resonant cavities, but the
p and g modes are not so clearly separated since there are modes
with nodes in both cavities. These figures can be qualitatively
understood in terms of the local analysis based on Equation (38).
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Abstract.

As an introduction to the subject basic properties of stellar pulsations
are derived using simple intuitive estimates. With respect to a theoreti-
cal description of pulsating stars the physical principles governing stellar
structure and dynamics are discussed. The associated equations are sim-
plified by the assumption of spherical symmetry thus providing the basis
for the study of radial pulsations.
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1. Preliminary Considerations

Variability of stars, observed either by photometric or spectral methods, can
originate from various effects. It could be caused by eclipses in binaries, by disks
in cataclysmic variables, by nuclear explosions in Novae and Supernovae, by star
spots associated with magnetic fields, or by oscillations of the star around its
equilibrium, i.e., by stellar pulsations, which are the subject of the current series
of lectures. In order to distinguish them from other sources of variability we
define them in a first attempt as an intrinsic property of a single, isolated star
exhibiting (possibly multiple) periodic variability of its effective temperature,
radius and luminosity.

Pulsating stars are of fundamental importance for astrophysics, since the
properties of the pulsations allow for reliable estimates of stellar parameters,
and certain classes of pulsating stars (e.g., Cepheids) can be used for distance
determinations. In asteroseismology direct information on stellar structure and
interiors is obtained from the spectrum of observed oscillation frequencies. His-
torically, the hypothesis, that stellar pulsations or oscillations may be responsible
for observed stellar variability was first raised by Shapley in 1914 and consid-
ered theoretically by Eddington in 1918 (see Cox, 1980). For further reading we
recommend the article by Ledoux & Walraven (1958) and the textbooks by Cox
(1980) and Unno et al. (1989).

In order to identify the stellar parameters governing the observed timescale
of pulsation-induced variability we consider the various timescales occurring in
stellar physics.

The mechanical or dynamical timescale is determined by the acceleration of a
mass element under the action of gravity. Denoting the radial position of a

64
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mass element with », the time with £, the mass of the star with A/, and the
gravitational constant with GG, we estimate the acceleration as

d%r GM
PR (1)

Using the stellar radius 12 as an estimate for » and the dynamical timescale 7pyy,
as an estimate for ¢ we are left with

R GM
—_— X — 2
B 12 ?
Solving for 7p,, we obtain
TDyn o< (Gp) 12 (3)

where p denotes the mean density of the star. Thus the dynamical timescale of a
star is entirely determined by its mean density and varies between milliseconds
for compact neutron stars and some 100 days for giants.

The thermal (Kelvin - Helmholtz) timescale 7xpr of a star may be defined
by the time needed to radiate its thermal energy content Fipermar at its current
luminosity L:

Ethermal
e 4
L (4)

Due to the virial theorem the thermal and gravitational potential energy Fg
. 2
of a star are of the same order of magnitude (Firermai X EGray X %) and we

obtain

TKH X

M? 7 (M/Mg)?
LR TS T R Ry ©)

Similar to the thermal timescale the nuclear timescale 7., of a star may
be defined by the time needed to radiate its nuclear energy content F,,. at its
current luminosity L. Since the nuclear energy content of a star is proportional
to its mass we are left with

TKH X

M/M,
T, L®® (6)

Comparing the nuclear, thermal and mechanical timescales of a star with
the observed timescale of stellar pulsations of at most a few hundred days we
conclude that the mechanical timescale is relevant for stellar pulsations. More-
over, the physics governing pulsations should be dominated by the mechanics of
the system. The pulsation - induced variability of stellar parameters is usually
small compared to their mean time independent values. Thus pulsations may be
regarded as oscillations around the mechanical (hydrostatic) equilibrium, where
the perturbed equilibrium is readjusted on the dynamical timescale.

Oscillations require a restoring force. In a star, two types of restoring forces
are available: Stellar matter is compressible and the perturbation of the density
of a mass element will be associated with a perturbation of its pressure implying

E M
Zuc o A o 1010years

Tnue X
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forces which counteract the density perturbation and tend to restore the un-
perturbed configuration. In a continuous medium this restoring force gives rise
to the existence of sound waves. Since pressure is the restoring force, standing
sound waves in a star are denoted as p - modes. Buoyancy is the origin of a
second restoring force. For its action it requires a non vanishing acceleration
(the gravity ¢ in a star) and a finite density gradient le—f. An aspherical displace-
ment of a mass element will then induce a restoring buoyancy force proportional
to the gravity and the density gradient (o g - %). In a continuous medium it
leads to the existence of gravity waves. Since gravity is an essential ingredient
in buoyancy, standing gravity waves in a star are denoted as g - modes.

With respect to the geometry we distinguish radial from nonradial pulsa-
tions. For radial pulsations the perturbations preserve the spherical geometry
of the hydrostatic star, whereas nonradial pulsations allow for non - spherically
deformed perturbations. Since buoyancy cannot act in spherical geometry, radial
g - modes do not exist and radial pulsations do consist of p - modes only. For
the same reason pure gravity modes - should they exist - have to be nonradial.
Nonradial pulsations contain both g - and p - modes, where the strict classifica-
tion of a given mode as g - or p - mode is not always meaningful, since there are
modes with a mixed character, where both restoring forces act simultaneously.

On the basis of the hypothesis that stellar pulsations may be regarded as
standing waves in a star we would like to provide a simple intuitive estimate of
their pulsation periods, restricting ourselves to considering radial acoustic p -
modes. As a guidance the analogue of an organ pipe as an acoustic resonator
turns out to be helpful. The acoustic frequency spectrum of an organ pipe is
obtained by considering the wavelengths A of standing waves which a pipe with
length L and rigid boundaries at the top and at the bottom (corresponding to
nodes of standing acoustic waves) allows for. If n — 1 denotes the number of
nodes within the pipe of the standing sound wave, A/2 can take the infinite
number of discrete values L/n. Assuming now that a star can be regarded as
an acoustic resonator similar to an organ pipe with nodes of standing waves at
the center (r = 0) and the surface (r = R) we identify the length L of the organ
pipe with the stellar radius R and obtain from A « L/n by analogy as an order
of magnitude estimate for the wavelengths of standing sound waves in a star
A x R/n. Wavelengths and associated frequencies v are in both cases related by

VA = CSound (7)
where the sound speed cgoung 1S given by

Czsmmd =yp/pxXp/p (8)

p, p and v denote pressure, density and the adiabatic exponent, respectively.
Thus the spectrum of acoustic frequencies of an organ pipe is estimated as

p/p

9
. (9
For the (radial) acoustic spectrum of a star we obtain the estimate

v= CSound//\ xXn

p/p
R (10)

v= CSound//\ xXn



Basic Physics of Stellar Pulsations 67

For a star, the ratio p/p can be estimated from the condition of hydrostatic
equilibrium:

19p  GM,

=T (11)

where M, denotes the mass within a sphere of radius ». Using & as an estimate

for %, M as an estimate for M, and R as an estimate for r we obtain

1p GM

-= 12
Thus the ratio p/p is given by
p GM
- x — 13
>R (13)

and the radial acoustic spectrum of a star (see equation 10) is estimated as

|GM
vxn Focn\/Gp (14)

Replacing the frequency by the pulsation period IT = 1 /v we obtain for the radial
fundamental mode (n = 1):

I1,/p = constant (15)

Equation 15 represents the period - density - relation for the radial fun-
damental mode of stellar pulsations. Note that according to our estimates the
density occurring in equation 15 has to be regarded as the mean density of the
star. A familiar form of the period - density - relation (see, e.g., Cox, 1980)
reads:

M(p/pe)? =Q with 0.03d < Q <0.12d (16)

The variation of @ is caused by the influence on the pulsation period of
different stellar structures, which was not accounted for by our simple estimates.
Note that the period - density relation is consistent with our initial findings that
the timescale of pulsations is given by the dynamical timescale (equation 3).

2. Physics of Stellar Structure and Dynamics

For continuous systems like stars two kinds of descriptions are common. In the
Eulerian framework fixed positions in space are considered, position vectors
and time ¢ are used as independent variables. Accordingly, the Eulerian time
derivative %V is defined at constant position vector 7. In the Lagrangean frame-
work fixed mass elements are considered, the initial position vector rj of a mass
element and the time ¢ are used as independent variables. Accordingly, the La-
grangean time derivative %VB is defined at constant initial position vector ry of
the mass element considered. Note that in the Lagrangean description the actual
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position vector 7 = #(r(,t) is a (time dependent) dependent variable. For the
definition of the velocity ¢ the Lagrangean description is adopted:

ar
0= — 17
V= (17)
Using the relation
d 0
- == AV 18
=5 T OV (18)
between the Lagrangean and the Eulerian time derivatives the acceleration fl—f
can be written as
dv  0v
b, 7 1
prilv + (TV)¥ (19)

Depending on which of the equivalent descriptions is more convenient for
the particular situation studied, either the Eulerian or the Lagrangean approach
(or even a combination of them) is used.

The physical principles governing stellar structure and dynamics comprise
the conservation laws for mass, momentum and energy together with Poisson’s
equation for the gravity and a prescription for the energy transport. In its
differential form mass conservation is described by the continuity equation

dp
it 2 9
7 +pVi=0 (20)

Alternatively, the continuity equation in the Eulerian approach may be written
as

dp
ot
By definition, an incompressible motion is characterized by a vanishing La-
grangean time derivative of the density (% = 0). According to equation 20
this condition is equivalent to V&' = 0, i.e., to a vanishing divergence of the
velocity field. Incompressibility and homogeneity, which would correspond to a
vanishing gradient of the density (Vp = 0), must not be confused.
In the absence of viscosity and magnetic fields, momentum conservation is
described by Euler’s equation:

+V(p?) =0 (21)

v 9v
Py =Pl T @OV)0) ==Vp—pV¢ (22)

The left hand side of equation 22 describes the inertial forces in either the La-
grangean or the Eulerian framework, the first term on the right hand side corre-
sponds to forces induced by pressure gradients, the second refers to the gravita-
tional force where ¢ is the gravitational potential. It is determined by Poisson’s
equation:

A ¢ =4nGp (23)

The solution of Poisson’s equation 23 may be represented as:
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— p(fv t) 3
t)=-G d 24
o7t = =G [ B 29
Based on the first law of thermodynamics energy conservation may be ex-
pressed as

du

Pt

where u, F' and ¢ denote the specific internal energy, the heat flux and the

specific energy generation rate, respectively. The variation with time of the

internal energy of a mass element is given by the mechanical work done by the

element (first term on the r.h.s. of equation 25), the (nuclear) energy generation

within the element (second term) and the heat deposited in it, expressed in terms

of the divergence of the heat flux (third term). With V' = 1/p, the continuity

equation 20 and some basic thermodynamics two terms of equation 25 may be
rearranged to yield:

= —pVi 4 pe — VF (25)

du . du dVv ds
P TPVI=pl +oor) =T (26)

where T" and s denote temperature and specific entropy, respectively. Thus an
alternative form of energy conservation (equation 25) is given by

ds _

In stellar interiors energy transport is usually approximated by a diffusion
type process, where the heat flux is proportional and opposite to the temperature
gradient:

T

F=—-DVT (28)

The particular transport process enters through the diffusion coefficient D.
In the optically thick regime (e.g., in stellar interiors) radiation transport can be
treated in the diffusion approximation with D given by:

p = dac s (29)
3kp
where a, ¢ and x are the radiation constant, the speed of light and the Rosseland
mean of the opacity, respectively.
If nuclear processes are of interest, the system of equations has to be com-
plemented by the variation with time of the chemical composition (X; denotes
the mass fraction of nucleus 7) induced by nuclear reactions:

dX; dX;
== X, T) (30)
The specific dependence on chemical composition, pressure and temperature of
the reaction rate entering equation 30 is provided by nuclear physics.

A closure of the system of equations given above is accomplished by the
prescription of a thermal and a caloric equation of state (EOS) provided by
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thermodynamics and atomic physics. Depending on the thermodynamic basis
adopted it may formally be written as, e.g.,

p=pp,T) or p=ppT) or s=s(pT) (31)

Moreover, the Rosseland mean of the opacity x = k(p, T) and the nuclear energy
generation rate ¢ = £(p,T) have to be provided by atomic and nuclear physics
either in parametrized or in tabular form.

The problem posed by the system of equations introduced here consists
of their application to stellar structure and dynamics and their mathematical
solution. Concerning the latter, a numerical treatment of the equations with
subsequent numerical simulations seems to be an appropriate strategy. However,
concerning stellar pulsations reliable nonlinear 3D simulations satisfying the nec-
essary accuracy requirements are still not yet feasible. Therefore the theoretical
study of stellar pulsations still relies on simplifications and approximations.

3. Radial Pulsations

As an attempt to reduce the mathematical complexity of the problem we sim-
plify its geometry by assuming spherical symmetry, i.e., we restrict our studies
to radial pulsations. However, according to the preliminary considerations in
section 1 this assumption does not only simplify the mathematics, it also leads
to a loss of physical effects, such as buoyancy. As a consequence, e.g., g - modes
are excluded in this approach. Therefore the interpretation and generalisation of
results based on a radial analysis has to be dealt with caution. For convenience,
we introduce spherical polar coordinates (r, 6, ¢) and adopt the Lagrangean de-
scription. Then the mass M, contained within a sphere of radius r is given by
(subscripts O refer to initial quantities in the Lagrangean sense):

r(ro,t) 9 70 9
M, :/ p(r', t)dmr'  dr! :/ p(ro")dmry dry’ = M,, (32)
0 0
With this definition the conservation of mass is expressed as

M,
=0 (33)

and M, = M,, is chosen as a new Lagrangean variable replacing 7. Thus M,
(and t) have become independent Lagrangean variables, whereas r(M,,t) is a
dependent variable. The relation between r and M, is obtained by differentiation
of the definition of M, (equation 32):

Mr :Mro ;

or 1
oM,  4mrp

oM,
Or

=dar?p or

(34)

Note that in equation 34 the derivatives have to be interpreted in the Lagrangean
sense. In spherical symmetry the gravitational force occurs in Euler’s equation
22 in terms of the gradient % of the potential ¢. It is determined by Poisson’s
equation 23 which in spherical symmetry is given by:
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P20 200 10 .00
o2 ror  r2or " or

By multiplication of equation 35 with 72 and integration we obtain:

) =4nGp (35)

rz? = [ 4nGpridr = GM, (36)
r
For the gravity we are thus left with

09 GM,

o = 2 (37)

Note that the particular choice of the Lagrangean variables allows for an algebraic
representation of the gravitational force. No further integration is required.

To present the equations governing radial pulsations in their conventional
form, some transformations and definitions have to be introduced: The radial
component [, of the heat flux is replaced by the luminosity L(r) through

L(r) = Anr®F, (38)

Choosing pressure p and temperature 7" as the thermodynamic basis we write
the differential of the specific entropy s = s(p,T') as

)
Tds = ¢, dT — ;dp (39)

where ¢, denotes the specific heat at constant pressure and the coefficients o and
4 of the differential form of the equation of state p = p(p, T') are defined as

a_alogp . 5__610gp
_(910ng ’ N Glong

(40)

The transformation from r to M, as an independent variable is accomplished by
using equation 34 in the form

— =dmrip—— 41

or p@MT (41)
We are thus left with the following system of equations describing the spherically
symmetric structure and dynamics of a star (% refers to the Lagrangean time
derivative):

Mass conservation

1
L = Ty “2)
Momentum conservation
Op GM, 1 0%
oM, IR P Sy s o2 (43)
Energy conservation
oL ar ¢ @ (44)

oM, S T %o T o
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Energy transport

oT 3kL
= — 45
OM, 64m2acrdT? (45)
Change of chemical composition by nuclear processes
0X; 0X;
= X, p, T 46
at at ( J?p7 ) ( )

This system of five partial differential equations needs to be closed by the pre-
scription of an equation of state and by specifying the nuclear energy generation
rate ¢ and the opacity k. We note that energy transport processes other than ra-
diation diffusion are not taken into account in equation 45. In particular, energy
transport by convection is disregarded.

Three terms involving a time derivative occur in equations 42 — 46, each
of them being related to one of the characteristic stellar timescales discussed in
section 1: The acceleration term in equation 43 is associated with the dynamical
timescale, the time derivative of the entropy in equation 44 (expressed by the
time derivatives of temperature and pressure, respectively) with the thermal
timescale and the time derivatives of the mass fractions in equation 46 with the
nuclear timescale. {

Stellar evolution relies on hydrostatic equilibrium (% = 0) and is governed
by the nuclear and the thermal timescales. Thus the description of standard
stellar evolution is included in equations 42 — 46 as the special case of vanishing
acceleration.

On the other hand, the study of pulsations requires deviations from hydro-
static equilibrium (% # 0), whereas on the timescale of pulsations the nuclear
changes of the chemical composition may be ignored. Thus nuclear processes, i.e.,
equations 46 are usually ignored and the chemical composition in terms of the
mass fractions X; is assumed to be constant on the dynamical timescale of pul-
sations. Thus pulsations are governed by the dynamical and thermal timescales.
Under certain conditions for pulsations even the change of the entropy (i.e., its
time derivative in equation 44) may be neglected. Then the energy equations
can be disregarded altogether and we are left with a mechanical system, where
pulsations are completely determined by the dynamical timescale.

Acknowledgments. I would like to thank the organisers of the VIII LAPIS
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Abstract.

We discuss the general strategy of the theoretical description of stel-
lar stability and pulsations. The initial construction of a spherically sym-
metric stellar model in hydrostatic equilibrium is followed by considering
small perturbations around the equilibrium. Both for radial and nonradial
disturbances the linear equations governing these small perturbations are
derived. The influence of the thermal and the dynamical timescale on the
properties of linear pulsations is discussed in detail. For unstable stellar
models the last step of the general approach consists of following the evo-
lution of an instability into the nonlinear regime by numerical simulation.
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— stars: oscillations

1. General Strategy

In the present paper, we will adopt the same notation as in the previous lecture in
this volume on “Theoretical Description and Basic Physics of Stellar Pulsations”
(hereafter referred to as paper I). Moreover, we shall make use of the results
obtained there.

Most of the pulsating stars maintain their mean properties (such as lumi-
nosities and effective temperatures) while pulsating. Moreover, the pulsational
variability of the stellar parameters is in general small compared to their station-
ary mean values. Thus pulsations may be regarded as “small” time dependent
perturbations superimposed on a stationary star in hydrostatic equilibrium. For
a theoretical treatment these findings suggest to start with a hydrostatic stellar
model subsequently considering time dependent perturbations of the equilibrium,
which are small compared to the equilibrium values. As a consequence, in an
expansion around the equilibrium only terms linear in the perturbations will be
significant while higher order terms in the perturbations can be neglected. Thus
the approach will lead to a system of linear equations for the perturbations.

The construction of a (spherical) hydrostatic stellar model as the first step
of the analysis can be accomplished by standard stellar evolution calculations
leading to models with the desired (or observed) parameters. Alternatively,
for prescribed (observed) stellar parameters hydrostatic envelope models can be
calculated by integration of the equation of mass conservation (see equation 42
of paper I):
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or 1
oM,  4mrp (1)

the equation of hydrostatic equilibrium (the equation of momentum conservation
with vanishing acceleration, see equation 43 of paper I):
0 G M,
= (2)
OM, 4

and the equation of energy transport (see equation 45 of paper I):

or B 3kL 3)
OM,  64m2acriT3

For prescribed chemical composition, luminosity L, effective temperature 7T, s
and mass M the integration of equations 1 — 3 can be performed as an initial
value problem starting at the photosphere. Initial values for » and p are obtained
from Stefan - Boltzmann’s law and an estimate for the photospheric pressure,
respectively (see, e.g. Kippenhahn & Weigert, 1990). In case of energy transport
by convection equation 3 needs to be modified. In a stellar envelope nuclear
processes do not occur (¢ = 0). As a consequence, the chemical composition
is constant and integration of the stationary form of the equation of energy
conservation (see equation 44 of paper I) shows the luminosity to be constant
there. We are thus left with the three ordinary differential equations 1 — 3
posing an initial value problem.

Assuming that a hydrostatic stellar model has been constructed either by
stellar evolution calculations or by envelope integrations in the way discussed
above, any physical variable ¢, where @ stands for, e.g., pressure, temperature
and density, will be known for this model as a function of M,. Hereafter, quan-
tities referring to time independent hydrostatic models will be indicated by the
subscript 0, i.e., for further studies we can assume the physical variables Qg (M)
of a hydrostatic model to be given. Considering spherically symmetric time de-
pendent perturbations around the hydrostatic equilibrium we may decompose a
variable Q(M,,t) in the following way:

Q(Mra t) = QO(MT) + Ql(MTa t) (4)

where the perturbation @ (like @) depends on both A, and ¢. In the next
step, the decomposition 4 is inserted in the system of equations describing the
spherically symmetric structure and dynamics of a star (equations 42 — 45 of
paper I) to obtain a system of equations for the perturbations Q1. In accordance
with the general strategy we shall assume in this procedure that (Jo satisfies
equations 42 — 45 of paper I separately and that the perturbations (1 are
“small” compared to their hydrostatic counterparts Qq:

h QN> _ &

Thus terms of higher order than linear in the perturbations can be neglected
and we are left with a system of linear equations for the perturbations Q1. As



Linear Analysis 75

a consequence of the linearisation of the problem achieved in this way the solu-
tions of the linear differential equations may be superposed and multiplied by
an arbitrary complex constant to yield further solutions of the system. Thus the
amplitude of the perturbations remains a free parameter and cannot be deter-
mined in the linear approach. If pulsation amplitudes are to be determined, a
nonlinear treatment of the problem is inevitable.

Should a stellar model turn out to be unstable according to the linear treat-
ment its final fate might be determined — as a last step of the general strategy —
by following the evolution of the instability into the nonlinear regime by numer-
ical simulation of the complete set of nonlinear equations (equations 42 — 45 of
paper I). This approach would then also allow for a determination of pulsation
amplitudes, if finite amplitude pulsations are the result of a stellar instability.

2. Linear Radial Stability and Pulsations

In this section the equations governing “small” spherically symmetric perturba-
tions of a star in hydrostatic equilibrium will be discussed. The analysis and nota-
tion closely follows the paper by Baker & Kippenhahn (1962), see also Gautschy
& Glatzel (1990). Adopting the general strategy described in section 1 a hydro-
static model is assumed to be provided in terms of the physical variables Qo(M,.).
The variables @ are decomposed according to equation 4 and inserted into equa-
tions 42 — 45 of paper I. Assuming % < 1 all terms are expanded around (g
retaining only stationary terms and expressions linear in the perturbations. For
illustration, the linearisation of the expression T% (r is a dependent variable) and

the equation of state p = p(p,T) is performed explicitly:

1 1 1 1 1
= = T (1-2r/r) = — — 2% 6
r2 T02(1+T1/T0)2 T02( 1/ 0) T02 ’1"03 ( )

p=po+pr=ppT)=ppo+p,To+T1)

dp > dp
_|_ —_—
idre Opl <8T

= p(po, To) + (6_

) Ty + O(p*, T1?)
P/ o

dp dp
= —_— T, /T,
po + <Glogp T>Op1/p0 + <alogT p)o 1/To
Hence
dlog p dlog p
p1/po <Glogp T>0p1/p0+<610ng ) 1/To = ogp1/po ol /Ty (8)

Taking into account that the variables (g satisfy the time independent version
of equations 42 — 45 of paper I separately the linearisation process finally yields
the following system of equations:
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Mass conservation

8r1 2

1
== - — 8T/ T,
BM, = “dmporg” ™ dmrgzpy 200/ 70— 60T1/Th) 0

Momentum conservation

(9p1 GMT 1 (92’1"1
=4 - 1
M, ~ Tdmrgd ' dmrg? 9e2 10

Energy conservation

6L1 6T1 50 (9291

A = G+ — T)/T, 11
OM, €po It +p0 ot + eo(epop1/Po + €101/ Th) (11)

Energy transport

0Ty Ty Opo ( Ly

Li/Lo —4ri/ro + kpop1/po — (3 — HTO)Tl/T0>

OM, — podM,  °\ [,ed 1)
12
where Vg, e, €1, K, and k7 are defined as:
dlog Ty
OM,
Vo = Dlos.po (13)
M,
dloge dloge
= ; = 14
°p dlogp|r T JlogT » (14)
dlogk dog k
= ; = 15
Fop dlogp |y T dlogT|, (15)

On the timescale of pulsations the change of chemical composition by nuclear
processes can be ignored (see section 46 of paper I). Therefore equation 46 of
paper I has been disregarded in deriving equations 9 — 12. Equation 12 is not
only valid for energy transport by radiation diffusion. In the form given, it is also
valid, if energy transport is partially provided by convection and if the coupling
between convection and pulsation can be treated according to the “frozen - in
approximation” (see, e.g., Baker & Kippenhahn, 1965). The latter consists of
assuming the convective flux to be constant during pulsations, i.e., the pertur-
bation of the convective flux is required to vanish. It is applied, if convection
contributes a minor fraction to the entire energy transport, and holds, if the
turnover timescale of convection is much larger than the pulsation timescale. In
the presence of convection Lq"*? refers to the energy transported by radiation
diffusion, whereas L¢ corresponds to the total flux consisting of both the radia-
tive and the convective flux. (In the absence of convection we have Ly = Ly.)
Within the “frozen - in approximation” the consideration of convection implies
the coefficient —£2 > 1 of Li/Ly in equation 12.

Lorad

For the numerical treatment of equations 9 — 12 we introduce relative per-
turbations Q1/Qo by
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C=rifro 3 t=T1/Ty ; p=pi/po ; 1=1Li/Lg (16)

For improvement of the numerical resolution in the outer stellar envelope we
change the independent variable from M, to logpg by the transformation pro-
vided by the equation of hydrostatic equilibrium:

apO o GMT
OM, —  Admrg (17)
0 _ GM, 0 (18)

oM, 4pore? 8log pg

Hereafter, the derivative with respect to log pg will be denoted with /. Times will
be measured in units of the dynamical timescale, i.e., we introduce a dimension-
less time 7 by:

T =t\/4nGp (19)

where p is the mean density of the star. We thus arrive at a system of dimen-
sionless differential equations appropriate for a LNA analysis, i.e., a numerical
analysis of radial linear nonadiabatic stellar stability and pulsations (see also
Baker & Kippenhahn, 1962):

Mass conservation

¢ = ca(3¢ + ap — 8t) (20)
Momentum conservation
0*¢
P = —p—4C+Csﬁ (21)
Energy conservation
1 ot Op
I'= — - = 22
“ (Vad(%' (97'> (22)
Energy transport
/ Lo
t = VO Wl — 4C + Kpp — (4 — I{T)t (23)

In equations 20 — 23 the dependent variables ¢, p,! and ¢ depend on log py (or
M,) and 7, whereas their coefficients are completely determined by the hydro-
static model, i.e., they depend on logpg (or M,) only. Since the risk of confusion
is small, subscripts 0 at the coefficients have been omitted and will be omitted
hereafter. As the influence on stellar pulsations of nuclear processes is expected
to be extremely small (see section 3 of paper I) terms associated with the nuclear
energy generation rate ¢ have been disregarded in equation 22. The coefficient
V4 occurring in equation 22 and defined as

_ OlogT
~ Ologp s

ad (24)
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is without any reference to a particular stellar model completely determined by
the equation of state as the logarithmic derivative of temperature with respect to
pressure at constant entropy (hence the subscript “adiabatic”). The dimensionless
coefficients ¢; are obtained as

drg3p
— 25
c3 M (25)
boTo 2

= 1 —0 26
c4 GM.po x 1/rg*  for g (26)

dmrgtpg?dy [4mp 9
= ———/— x1 —0 27
c1 3, Lopo e x 1/rg*  for g (27)

Except for ¢; which will be discussed in detail later all coefficients in equations
20 — 23 are of order unity. For 79 — 0 ¢; and ¢4 diverge like oc 1/79? (since
M, o« ro® and Lg o rg® for rg — 0).

Since the coefficients of the linear partial differential system 20 — 23 do not
depend on time it can be transformed into an ordinary differential system by
separating the time dependence of the dependent variables ¢ according to

Q(log po, 7) = Q(log po) exp(ioT) (28)

where the complex constant ¢ = o, + i0; denotes the dimensionless complex

eigenfrequency or eigenvalue. Thus time derivatives in equations 20 — 23 reduce

SRT . . . o . 52 2 .
to a multiplication with io (5> — io and 5~ — —0°) and the time dependence
in terms of the common coefficient exp(ioT) is eliminated from equations 20 —
23 leaving an ordinary differential system for the dependent variables ) with o
as a free parameter and logpo as the independent variable. In the following we
shall consider only the time independent parts ¢ of the dependent variables and

omit superscripts " for simplicity. Rewriting the time dependence of @ as

Q= Qexp(z’aﬂ —oyT) = Qexp(—aﬂ)(cos(aﬂ) + isin(o,7)) (29)

we observe that a finite real part of the eigenfrequency implies an oscillation with
frequency o,, whereas a finite imaginary part is associated with exponential decay
(for o; > 0) or exponential growth (for o; < 0) of a perturbation. Thus positive
imaginary parts of the eigenfrequency indicate stability, negative imaginary parts
correspond to an instability of the star.

The solution of equations 20 — 23, now regarded as a forth order ordinary
differential system with o as a free parameter, requires the specification of four
boundary conditions. At the photosphere (19 = R) being the outer boundary of
the stellar models Stefan - Boltzmann’s law

L =o0spR*T* 4y (30)

holds by definition (ogp is Stefan - Boltzmann’s constant). Its linearised form
in terms of the dependent variables of equations 20 — 23 is obtained as

l=2C+4t for =R (31)
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A second boundary condition at rg = R might be given by the requirement of a
force - free outer boundary implying the pressure perturbation to vanish there:

p=0 for ro=R (32)

The photosphere is the boundary of the stellar model, but not the physical
outer boundary of the star. As a consequence, there is a variety of physically
reasonable requirements which might be imposed as boundary conditions at rq =
R. In particular the condition 32 is a matter of debate, since the pressure at
the photosphere is finite. Thus the outer boundary conditions at v = R are
ambiguous and the influence of their choice on the results of the LNA analysis
needs to be studied.

For complete stellar models the inner boundary corresponds to the center
of the star (rg = 0). Rewriting the equations 20 and 22 of mass and energy
conservation as

(33)
¢4

1 /ﬁl > (34)

v

we deduce from equations 33 and 34 that the coefficients of the derivatives vanish
at the inner boundary rg = 0, since according to equations 26 and 27 é x 70°

and % o 792 holds for rq — 0. Thus ry = 0 is a singular point of the differential
system enabling diverging solutions for rg — 0. For the physical interpretation
regular solutions are needed, i.e., contributions from singular solutions have to be
excluded by appropriate boundary conditions. If , p, I, t and their derivatives
are required to remain finite at 7o = 0, the L.h.s. of equations 33 and 34 vanishes
there. As a consequence, also the r.h.s. of equations 33 and 34 has to vanish at
rg = 0 implying two boundary conditions for the differential system 20 — 23 at
rg = 0:

3 +ap—6t=0 ; r9=0 (35)

t—Vaup=0 ; 7r=0 (36)

ro = 0 is a regular singular point of the differential system 20 — 23 providing
the boundary conditions 35 and 36, if the solutions of the system (for physical
reasons) are required to remain regular. We emphasize that (in contrast to the
outer boundary) these boundary conditions are unambiguous. Any other choice
will induce singular contributions to the solutions.

The fourth order differential system 20 — 23 together with the two boundary
conditions 31 and 32 at r9 = R, the two boundary conditions 35 and 36 at
ro = 0 and the free complex parameter ¢ poses a boundary value problem. In
contrast to initial value problems boundary value problems in general do not
have a solution. However, an adjustment of the free parameter ¢ such that
a solution of the differential equations matches all boundary conditions may be
used to generate a solution of the complete system (differential equations together
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with the boundary conditions). Thus the strategy consists of identifying and
determining those values of o which allow for a solution of the boundary value
problem. (For stellar pulsations there is an infinite number of discrete values
of o satisfying this requirement.) According to its mathematical character the
problem discussed is also addressed as boundary eigenvalue problem with o being
the eigenvalue or eigenfrequency.

3. Local Definition of Dynamical and Thermal Timescales

The global dynamical and thermal timescales of a star have been introduced in
section 1 of paper 1. Here we are interested, whether and how these timescales
may be defined in a local way, i.e., not for the entire star but for a thin mass shell
within a star extending between the radii » and » + Ar. The global dynamical
timescale may be estimated as the time needed by a sound wave to cross the entire
star. Accordingly, its local analogon is the time needed by a sound wave to cross
a mass shell with thickness Ar. Estimating the sound speed as & Sound X p/p it
is given by:

TDyn X Ar\/p/—p (37)

Similar to the global thermal timescale, the local thermal timescale of a mass shell
with mass Am is defined as the time needed to radiate its thermal energy content
at the local luminosity, where the thermal energy content might be expressed
as the product of the specific heat ¢,, the temperature 7" and the mass Am.
Rewriting the latter in terms of the density p and the volume of the mass shell
we finally obtain for the local thermal timescale:

oTAm ¢ Tpdmr?Ar
L L

Both the local dynamical and the local thermal timescale depend on the thickness
Ar of the mass shell considered. Unless there are further arguments how to
choose Ar, they can be given any value since the choice of Ar is ambiguous.
Thus the local dynamical and thermal timescales given by equations 37 and 38
are ill-defined quantities without any physical relevance. However, their ratio
being independent of Ar is well defined and given by:

TThermal 47TT2pCpT
o 39
P— T Ve/p (39)

TThermal X (38)

For any stellar model the ratio of the local thermal and dynamical timescale
increases from values of the order of unity (or even below) at the photosphere to
the stellar center by many orders of magnitude. As an example it is shown as a
function of relative radius r/ R in Figure 1 for two stellar models having different
masses but the same luminosity L = 7.25 x 10°L, and effective temperature
Tepr = 18600K.

For Trhermal/TDyn > 1 the time for a mass element needed to exchange heat
with its surroundings significantly is much longer than any dynamical event such
as, e.g., a sound wave passing the element. As a consequence, the heat content
of the mass element may be considered to be constant in this situation, i.e., the
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Figure 1. The ratio of the local thermal and dynamical timescale as
a function of relative radius r/R for two stellar models with the masses
indicated having the same luminosity L = 7.25 x 10°L, and effective
temperature Terp = 18600K.



82 W. Glatzel

changes of state of the mass element occur at constant entropy and are adiabatic.
Together with an equation of state this condition implies an algebraic relation
between temperature and pressure and leads to the following linear equation for
the relative perturbations of temperature and pressure:

t—Vap =0 (40)

From Figure 1 we conclude that the condition 40 of adiabatic changes of state
is highly satisfied in the deep interior of a star. For reasons of regularity (see
equation 36) it holds even exactly at the very center (rqg = 0). Thus at sufficiently
deep layers within a star pulsations can be regarded to be adiabatic satisfying the
relation 40. Nonadiabatic effects have to be taken into account close to the stellar
surface, where the range in terms of the radial extent of significant deviations
from adiabatic behaviour sensitively depends on the stellar model considered.
For the model with M = 600 shown in Figure 1 it covers the outermost
= 20 per cent of the stellar envelope, whereas the adiabatic relation is a poor
approximation for the major fraction of the envelope of the M = 24M; model.
Accordingly, studies on pulsations based on the adiabatic approximation 40 are
expected to provide results comparable with those of the complete analysis, if
the range of radii with Trhermar/7pyn < 1 is sufficiently small. For the M =
24 M, model discussed the latter does not seem to hold and a fully nonadiabatic
treatment will be necessary.

Comparing the ratio 39 of the local thermal and dynamical timescales with
the definition 27 of the coefficient ¢; we deduce that except for a factor of order
unity the expressions are identical, i.e., ¢; occurring in equation 22 as the coef-
ficient of the time derivative of the entropy perturbation is essentially given by
the ratio of the local thermal and dynamical timescales and reaches extremely
high values when the stellar center is approached (see Figure 1). A large value of
¢1 (or rather the vanishing of 1/¢; as the coefficient of I’ in a suitably rewritten
form of equation 22) implies equation 22 to approach singularity with the result
that the time derivative of the entropy perturbation should vanish. Separating
the time dependence according to equation 28 we are left with the final con-
sequence that the expression Ldt — p is required to vanish when c¢; diverges.
In this way large values of ¢; naturally lead to adiabatic changes of state and
imply the adiabatic relation 40 to hold without the necessity to impose the condi-
tion of adiabatic changes of state additionally. Thus our physical considerations
concerning the various timescales and their consequences for the properties of
pulsations within a star completely agree with the mathematical analysis of the
perturbation equations. Through the relation between the timescales and the co-
efficients of the perturbation equations the physical and mathematical approach
implies the same predictions concerning the properties of stellar pulsations.

Motivated by the fact that for many stars the fraction of the envelope with
TThermal/TDyn < 1 is negligible implying adiabatic changes of state for the major
part of the star an approximate treatment of the perturbation problem 20 — 23
consists of requiring the adiabatic relation 40 to be valid for the entire stellar
model. As a consequence the mechanical and the thermal parts of equations
20 — 23 are decoupled and we are left with the mechanical equations of mass
and momentum, where the temperature perturbation is replaced by the pressure
perturbation using the adiabatic relation 40:
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Mass conservation
¢ =cs (3¢ + (@ — 6V ua)p) (41)
Momentum conservation
p'=—p—4C—o%csC (42)

Thus the fourth order boundary eigenvalue problem is reduced to a second order
problem where the (ambiguous) mechanical outer boundary condition 32 remains
unchanged

p=0 ; =R (43)

and the regularity condition at rg = 0 implied by ¢4 o 1/792 for 79 — 0 can either
be read off directly from equation 41 or is obtained by replacing the temperature
perturbation in equation 35 using the adiabatic relation 40. It is given by

3+ (a—0Vu)p=0 ; 1r9=0 (44)

Equations 41 and 42 together with the boundary conditions 43 and 44 describe
linear radial stellar stability and pulsations within the adiabatic approximation.

4. Linear Nonradial Stability and Pulsations

As discussed in section 1 we assume a spherically symmetric hydrostatic stellar
model to be provided in terms of physical variables Qg(M,). Considering now
nonspherical perturbations around the equilibrium it is more convenient to adopt
an Eulerian description with the position vector ¥ as an independent variable
rather than the Lagrangean approach where for spherical symmetry M, was used
as independent variable. Accordingly we express the stationary physical variables
in terms of the radial coordinate r as Qo(r). Adopting spherical polar coordinates
(r,0, ) any physical variable Q(r, 8, ¢, t) is — similar to the procedure described
in section 1 — decomposed as

Q(Tv 0., t) = QO(T) + Ql(rv 0, ¢, t) (45)

where @1 denotes the Eulerian perturbation of Q. (Note that the decomposi-
tion 4 refers to the Lagrangean perturbation of @Q.) The decomposition 45 is
then inserted into the equations of mass conservation (equation 21 of paper I),
momentum conservation (equation 22 of paper I) and energy conservation (equa-
tion 27 of paper I), the diffusion equation for energy transport (equations 28 and
29 of paper I) and Poisson’s equation for the gravitational potential (equation
23 of paper I). In accordance with the discussion in section 3 of paper I the
variation with time of the chemical composition (see equation 30 of paper I) is
ignored when considering pulsations. In contrast to radial pulsations, where an
appropriate choice of Lagrangean variables together with an analytical integra-
tion supersedes the complete solution of Poisson’s equation, the latter needs to
be considered explicitly in the case of nonradial perturbations. In accordance
with the general strategy (see section 1) we assume the stationary variables Qg to
satisfy the system of equations separately and the perturbations ¢ to be “small”
compared to their hydrostatic counterparts @y, i.e., we have @1/Qy < 1. Ne-
glecting terms of higher order than linear in the perturbations we thus arrive at a
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system of homogeneous linear partial differential equations for the perturbations
Q1.

We emphasize that perturbations of a physical variable ¢ defined either in
the Eulerian or Lagrangean approach are different and must not be confused.
Eulerian perturbations (in the following denoted with @) refer to a fixed posi-
tion in space whereas Lagrangean perturbations (in the following denoted with
AQ) refer to a fixed mass element. The Lagrangean perturbation of the position
vector 7 (a dependent Lagrangean variable) for a fixed mass element (an inde-
pendent Lagrangean variable) is denoted as Lagrangean displacement A7. For
any physical variable () the Lagrangean and Eulerian perturbations are related
by:

AQ = Q + APVQ (46)

Some authors use both Lagrangean and Eulerian perturbations and variables
simultaneously. Therefore it seems useful to note some commutation rules:

d, o dQ 9~ 0Q | A -
dQ d ~ -
L LG +iva, (43)
7= %Aﬂ— (R V)AF — (AT (49)

The system of linear partial differential equations for the perturbations ¢4
contains the derivatives % and % only in the combination

0* I 0

2o fcotf— = ? 50

967 st a2 < og (50)

Spherical harmonics Yy, (6, ) with integer harmonic indices [ = 0, 1,2, ... and
m = —I,...,[ are eigenfunctions of the operator L? with eigenvalues I(l 4 1):

L = (1 +1)Yim, (51)

They provide a complete orthonormal system in terms of the variables § and
@ which suggests an expansion of the perturbations ¢}1 in terms of spherical
harmonics:

Ql(rv t,0, @) = Z Qllm(rv t)Y'lm(a @) (52)

Im

Inserting the expansion 52 in the perturbation equations and multiplying them
with Y}/, we take advantage of the orthonormality of the spherical harmonics Y},
thus removing the angular dependence and achieving a separation of the angular
variables 6 and . We are left with a system of partial differential equations (with
independent variables r and t only) for the coefficients Q1. (7, t) containing only
the harmonic degree | as a parameter. As m does not appear explicitly as a
parameter in the equations, the solutions are 2] + 1 - fold degenerate. The
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spherical symmetry of the hydrostatic model described in terms of Qq(r) both
enables the separation of the angular variables by expansion in terms of spherical
harmonics and induces the degeneracy with respect to the harmonic index m.
Finally, a separation of the time dependence of the perturbations 1 (enabled by
the time independence of Q) is achieved similar to the radial case (see equation
28) by

Qllm(rv t) = Qllm(r) exp(z’wt) (53)
where w denotes the complex eigenfrequency. Thus the perturbation equations
are reduced to an ordinary differential system with r as an independent variable
and the harmonic degree [ and the eigenfrequency w as parameters. Keeping in
mind that its solutions depend on these parameters, superscripts and indices are
usually omitted at the perturbations.

As the main physical and mathematical aspects of the ordinary differential
system describing linear nonradial stability and pulsations are similar to those
discussed in connection with the corresponding radial issue (see sections 2 and
3) we shall not explicitly present it here. Rather we shall comment only on the
specifics of the nonradial problem and refer to Glatzel & Gautschy (1992) for
further details. As its radial counterpart (equations 20 — 23) the nonradial per-
turbation equations consist of three equations associated with mass, momentum
and energy conservation and one equation related to energy transport. Except
for an additional term in the mass conservation equation which is proportional
to (I + 1)/o? and gives rise to the existence of gravity waves they exhibit the
same structure and properties as the radial perturbation equations 20 — 23.
In contrast to the radial problem Poisson’s equation (second order) needs to
be solved explicitly when considering nonradial perturbations which implies two
additional first order equations for the perturbation of the potential and its
derivative. Accordingly, nonradial stability and pulsations correspond to a sixth
order boundary eigenvalue problem while radial stability and pulsations lead to
a fourth order problem.

For the sixth order differential system three unambiguous boundary condi-
tions are provided at the stellar center by the fact that » = 0 is a regular singular
point of the equations implying a regularity condition for each type of variables
(thermal, mechanical and potential variables). For the numerical treatment a
transformation of variables according to @ — @Q/7' is needed (see Glatzel &
Gautschy, 1992) to avoid numerical ambiguities in the formulation of the inner
(r = 0) boundary conditions. At the outer boundary (photosphere) only the
condition involving the potential variables is unique: It is obtained by the re-
quirement that the potential and its derivative is continuously connected to the
vacuum solution of Poisson’s equation which decays at infinity. Similar to the
radial case both the thermal and mechanical boundary conditions at the photo-
sphere are ambiguous, since the photosphere is the outer boundary of the stellar
model but not the physical outer boundary of the star. A possible choice of
boundary conditions consists of assuming Stefan - Boltzmann’s law to hold and
the (Lagrangean!) pressure perturbation to vanish there (force - free boundary),
see also equations 31 and 32.
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Abstract.

The linear stability analysis of stellar models poses a linear fourth
or sixth order boundary eigenvalue problem. Methods for its numerical
solution are reviewed, most of which face severe problems, if the ratio of
the thermal and dynamical timescale falls below unity for a significant
fraction of the stellar envelope considered. The extremely robust and
highly accurate Riccati method is introduced and shown to be applicable
to stellar stability problems with success even in these cases of strong
deviations from adiabaticity. Numerical simulations of the evolution of a
stellar instability into the nonlinear regime are still restricted to spherical
geometry. We address the basic requirements for and problems connected
with the simulation of radial pulsations. How violent artificial initial per-
turbations may be avoided and the extremely high accuracy requirements
posed by the differences between the various energy forms can be met by
strictly conservative numerical schemes is discussed.

Key words: asteroseismology — hydrodynamics — methods: numerical
— stars: mass loss — stars: oscillations

1. Numerical Solution of the Linear Stability Problems

In the present paper, we will adopt the same notation as in the previous lectures
in this volume on “Theoretical Description and Basic Physics of Stellar Pulsa-
tions” and on the “Linear Analysis” (hereafter referred to as papers I and II). We
shall make use of the results obtained there.

1.1. Matrix Methods and Shooting Methods

We consider the boundary eigenvalue problems emerging from the study of lin-
ear stability and pulsations and discussed in sections 2 and 4 of paper II for
radial and nonradial perturbations respectively. They consist of four (radial per-
turbations) or six (nonradial perturbations) homogeneous ordinary differential
equations supplemented by two (radial case) or three (nonradial case) homoge-
neous boundary conditions on each end of the integration interval. A solution of
the boundary value problem is accomplished by adjusting the complex parameter
o properly. The values of ¢ which allow for a solution are denoted as eigenvalues
(or eigenfrequencies).

87
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The solution of the boundary eigenvalue problems using a matrix method
relies on a discretization of the integration interval by N grid points where z;
denotes the position of grid point ¢ in the integration interval. The value of a
dependent variable u at x; is denoted by u;: u; = wu(x;). Derivatives can then
be expressed in terms of {u;} and {z;}. For example, a simple possibility to

represent the derivative g—;‘ of the variable v would be given by:

d . — oy
e g

X Ti+1 — T4
By the boundary conditions some values of the dependent variables at the bound-
aries of the integration interval are fixed. As a result of this approach we finally
obtain a linear homogeneous algebraic system of equations which might be writ-
ten as:

A(c)u=0 (2)

In equation 2 u is for the radial problem a (4 x 2 x N — 4 x 2) - dimensional
real vector containing all dependent variables {u;}. (For the nonradial problem
itisa (6 x2x N — 6 x 2) - dimensional real vector.) The coefficient 4 (or 6)
stands for the number of dependent continuous variables, i.e., the number of
differential equations, the coefficient 2 accounts for the fact that the variables
are complex. The subtraction of 4 x 2 (or 6 x 2) corresponds to the consideration
of the boundary conditions. A is a matrix having the same dimension as u
which contains the information on the hydrostatic stellar model and depends
on the eigenvalue ¢ (and the harmonic degree [ as a parameter). The linear
homogeneous system of equations 2 has a solution, if the determinant of A
vanishes, i.e., if

det A(o) =0 (3)

Thus the eigenvalues ¢ are provided by the zeros of the determinant of the matrix
A.

For the solution of equations 2 and 3 posing a standard problem in linear
algebra a variety of — mainly iterative — numerical algorithms is available. How-
ever, an iterative solution requires initial guesses both for the eigenvalues and
the eigenfunctions which are usually taken from the result of a numerically less
difficult approximate treatment of the problem, e.g., from the adiabatic approx-
imation. As a consequence, eigensolutions which significantly differ from their
approximation or do not have a counterpart in the approximation at all, cannot
be identified. Moreover, the convergence of an algorithm towards a pretended
solution does not prove it to be a true solution of equation 2. Whether the pro-
cedure has converged towards a true or a numerically induced spurious solution
is often difficult to decide. The dimension of the matrix A is proportional to the
number N of the grid points used. Thus the resolution of the method is limited
by the maximum dimension of A, for which the iteration algorithm provides reli-
able results and which can be handled by the available computational device. As
the optimum distribution of grid points depends both on the hydrostatic model
and the eigensolution to be calculated, it is not known a priori. Accordingly, for
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a given number of grid points the resolution will suffer from their unfavourable
distribution.

The solution of the boundary eigenvalue problems using a shooting method
relies on the integration of the differential equations as an initial value problem
which guarantees a unique solution for any initial condition (and any value of
the parameter o). Starting at one of the boundaries, four (radial problem) or
six (nonradial problem) initial conditions have to be specified only half of which
are given. The remaining two (or three) initial conditions in addition to the
eigenvalue o have to be guessed. Once with these initial conditions (and the
value of o chosen) the integration (using any standard algorithm for initial value
integration) arrives at the other boundary the solution is compared with the
two (or three) boundary conditions prescribed there. The discrepancy between
the solution and the boundary conditions forms the basis for the iteration of
the unknown initial conditions and the eigenvalue ¢ until solution and boundary
conditions match.

Shooting methods do not require any estimates for the eigenfunctions. More-
over, the stepsize of the initial value integration can be adapted locally to match
any prescribed accuracy requirement and to resolve any detail of the eigenfunc-
tion and the hydrostatic model. There are no limitations concerning computer
storage and the maximum dimension of any matrices involved. A severe problem
is associated with the iteration of the unknown initial conditions. For bound-
ary eigenvalue problems of higher than second order the ambiguity in the initial
conditions in general introduces the parasitic growth problem, i.e., exponentially
growing particular solutions of the initial value problem induced by improperly
chosen initial conditions will eventually dominate the entire solution and prevent
a solution of the boundary value problem. Thus the numerical instability associ-
ated with parasitic growth caused by ambiguous initial conditions is the reason,
why simple shooting methods in general fail when applied to boundary value
problems of higher than second order. In the next section we shall show how
the ambiguity in the initial conditions can be avoided and, as a consequence, a
numerically stable shooting method is obtained which may be used successfully
to solve high order boundary eigenvalue problems.

1.2. The Riccati Method

The system of differential equations governing linear stability and pulsations may
be rewritten in terms of vectors u and v and matrices A, B, C and D as

u' = Au+ Bv

v/ = Cu + Dv (4)
where u and v are twodimensional (radial perturbations) or threedimensional
(nonradial perturbations) vectors each of them containing two (or three) depen-
dent variables. The elements of the 2 x 2 (or 3 x 3) matrices correspond to the
coefficients of the differential systems and can be read off from the equations
directly. They depend on the hydrostatic model, the eigenfrequency ¢ and — for
nonradial perturbations — on the harmonic degree . As an example, for radial
perturbations (see equations 20 — 23 of paper II) u and v may be defined as



90 W. Glatzel

() +(3)

The matrix A is then read off from equations 20 and 23 of paper II as

- 364 —564
A= ( —4V) —Vo(d— k) > (6)
The 2 x 2 (or 3 x 3) complex Riccati matrix R is now defined by

u=Rv (7)

Differentiating 7 and using 4 and 7 to replace u’, v/ and u we obtain

u =R'v+RvV
Au+ Bv =R'v +R(Cu+ Dv) (8)
ARv +Bv =R/v + R(CRv + Dv)

and finally

(R'+ RCR+RD - AR - B)v =0 (9)

Since equation 9 must hold for any arbitrary vector v we are left with the Riccati
equation for the (complex) Riccati matrix R:

R'=B+ AR - RD - RCR (10)

Note that equation 10 is a nonlinear matrix differential equation involving only
the Riccati matrix and the coefficient matrices A, B, C and D. The boundary
conditions for the primary linear system 4 can now be rewritten as initial condi-
tions for the integration of the Riccati equation 10. As an example, we consider
the boundary conditions for radial perturbations at g = 0 (see equations 35 and
36 of paper II):

3 +ap—06t=0 (11)
t—Vaup=0 (12)
They are equivalent to the two equations
a 0
S IR v 13
c= (=5 +57u)r (13)
= Vadp (14)

which may be rewritten in terms of the vectors u and v defined by equation 5:

a= ()= (1 I ) (D erimow a9
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The matrix relating u and v by definition (see equation 7) corresponds to the
Riccati matrix R at the boundary 79 = 0. It is denoted by R(ry = 0) in equation
15. From equation 15 we deduce that the boundary conditions unambiguously
determine the value of the Riccati matrix at the boundary ro = 0, i.e., they
provide unambiguous initial conditions for the integration of the Riccati equation
10. With the modification that the inverse of the Riccati matrix is determined
uniquely this result also holds for the outer boundary (photosphere). In general
the boundary conditions for the linear boundary value problem 4 imply unique
initial conditions (in terms of unambiguous initial values for the Riccati matrix or
its inverse) for the integration of the nonlinear Riccati matrix equation considered
as an initial value problem.
Equivalently, a complex matrix S relating u and v may be defined by

v = Su (16)

instead of the definition 7 for R. From equations 7 and 16 we deduce that
S = R! (provided that R™! does exist). Similar to R its inverse matrix S
satisfies the Riccati equation 10, however with A substituted by D (and vice
versa) and B substituted by C (and vice versa). During integration R (or S)
may become singular. In this case we can switch from the integration of R to
the integration of S (or vice versa). Experiments suggest that switching from
integrating R to integrating S (or vice versa) is appropriate, if | det R| (or | det S|)
exceeds a conveniently chosen threshold (> 1).

Thus the Riccati approach consists of a transformation of the linear bound-
ary value problem into a nonlinear initial value problem with unambiguous initial
conditions for the integration of the Riccati matrix R (or its inverse S). Being a
shooting method it benefits from all associated advantages in particular concern-
ing reliability, resolution and accuracy. Simultaneously it does not suffer from
the problem of unknown initial conditions which is typical for shooting methods
applied to high order differential systems. The Riccati method is based on an
initial value problem with unique initial conditions. There is no need to iterate
a priori unknown initial conditions. As a consequence, the Riccati method is
numerically stable and does not suffer from the parasitic growth problem.

Using the Riccati method the stability problem is characterized by unique
initial conditions at both boundaries of the integration interval and the coefficient
matrices A, B, C and D. They depend on the stellar model considered, the
harmonic degree [ and the complex eigenfrequency o, which is the only free
parameter of the problem. For arbitrary values of o a solution of the boundary
eigenvalue problem posed by the stability analysis does not exist (see section 1.1).
In order to determine those values which allow for a solution of the problem by
using the Riccati method the Riccati equation is integrated for some prescribed
value of ¢ from both boundaries (unique initial conditions!) to some intermediate
point T, within the integration interval. As a result, we obtain two Riccati
matrices at s, determined by the "inner" integration from the bottom boundary
to xy; and the "outer" integration from the top boundary to xy;. We denote
them by R, and Rgy;.

For a solution of the boundary eigenvalue problem the eigenfunctions need to
be continuous all over the integration interval, i.e., u and v have to be continuous
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in the integration interval, in particular at xy;. This condition may be written
as

Wip = Uyt (17)

Vin = Vout

where u;, and v;;, denote solutions for u and v at xs; obtained by integration
between the bottom boundary and ;. Uow and v denote solutions for u
and v at z; obtained by integration between the top boundary and z ;. Using
the general definition 7 of the Riccati matrix R we obtain from the requirement
of continuity at x ¢ (equation 17)

Wi, = Ripnvin = Uour = RourVour = RowtVin (18)

and

(Rzn - Rout)vin =0 (19)

A necessary condition for the existence of a solution of the linear homogeneous
equation 19 is given by

det(Riy — Rout) =0 (20)

The condition 20 involves R;, and R, which only depend on the eigen-
frequency o but otherwise have been uniquely determined by integration of the
Riccati equation. Thus det(R;, — Ryyt) is a complex valued function of the com-
plex variable o and its zeros correspond to a solution of the boundary eigenvalue
problem. l.e., those values of ¢, for which the determinant in equation 20 van-
ishes, are the eigenfrequencies of the system we have been searching for. Their
determination has thus been reduced to finding the complex zeros of a complex
valued function, which can be done using standard numerical techniques (e.g.,
the Newton - Raphson method). We emphasize that for the determination of
the determinant function in equation 20 neither the auxiliary solution of an ap-
proximate problem nor estimates for eigenvalues and eigenfunctions are required.
The determinant function is entirely based on the unrestricted stability problem
without reference to any additional approximation or estimate.

In general numerical algorithms used for the precise determination of the zeros of
a function require initial guesses for the position of the zero to start an iterative
process. They can be obtained simply by tabulating det(R;,, —Roy¢) as a function
of the complex variable 0. Note that even these estimates are based on the
unrestricted stability problem and do not rely on any auxiliary approximative
treatment. Thus the danger to miss unexpected eigenvalues which are not present
in approximative treatments of the problem is considerably reduced. Moreover,
by tabulating the determinant function in the vicinity of a value of o, to which
an iterative root finding process has converged, it is possible to check whether
this value corresponds to a spurious or a true eigenvalue of the system. The
eigenvalues of the stability problem do not (and must not) depend on the choice
of x; which is a free parameter of the Riccati method. However, the run of the
determinant function may sensitively depend on the position of zf; within the
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integration interval and a suitable choice of z; can considerably facilitate the
search for eigenvalues and their iteration.

Once an eigenvalue o and the associated Riccati matrix R(z) as a function
of the independent variable = has been determined, also the corresponding eigen-
functions u(z) and v(z) can be calculated. First of all v;,, is obtained from the
linear homogeneous continuity condition 19. With vy, = vy, = v(xfl-t) we thus
have initial conditions for the integration of the eigenfunction component v from
x i both to the bottom and the top boundary using equation 4 together with
the definition 7 of the Riccati matrix:

v/ =Cu+Dv =(CR+D)v (21)

Note that for the integration of equation 21 the predetermined values for the
Riccati matrix R have to be used, the Riccati equation and equation 21 must
not be solved simultaneously. Finally, the eigenfunction component u is obtained
using the definition 7 of the Riccati matrix as u = Rv.

For more details on the application of the Riccati method to stellar stability
problems we refer to Gautschy & Glatzel (1990), further discussions of it may
be found in Scott (1973), Davey (1977) and Sloan (1977).

2. Numerical Simulation of Pulsations in the Nonlinear Regime

Similar to the previous section we shall adopt the same notation as in papers I
and II and shall make use of the results obtained there.

2.1. Basic Assumptions and Equations

Once a stellar model has been found to be unstable according to a linear stabil-
ity analysis the final result of the instability (e.g., finite amplitude pulsations,
mass loss, disruption of the stellar envelope) needs to be determined. A pos-
sible approach consists of following the time development of the instability by
numerical simulation from hydrostatic equilibrium through the linear phase of
exponential growth into the nonlinear regime. At this stage the amplitude of the
perturbation is defined and the growth may enter saturation, if the instability
leads to finite amplitude pulsations. Should these pulsations be associated with
mass loss, or should the envelope become disrupted, the results of the simulation
will then provide corresponding evidence.

Since a suitable numerical procedure, satisfying the necessary requirements
concerning accuracy and resolution (see below) is not available so far, the nonlin-
ear simulation of nonradial pulsations and intrinsically threedimensional effects
(magnetic fields, rotation) is not yet feasible. Therefore numerical simulations
of nonlinear pulsations are so far still restricted to onedimensional studies in
spherical geometry.

In accordance with our previous discussions the outer boundary of the mod-
els will be taken to be the stellar photosphere, i.e., the atmosphere and optically
thin parts of the star will be disregarded. As a consequence, radiation transport
can be described on the basis of the diffusion approximation. In the absence of
a satisfactory description of convection in a pulsating star we adopt, similar to
the treatment of convection in the linear analysis (see section 2 of paper II), the
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“frozen - in approximation” (see, e.g., Baker & Kippenhahn, 1965). It consists of
assuming the convective flux to be constant (and equal to its value in the initial
hydrostatic model) during pulsations. This assumption is to be understood in
the Lagrangean framework, i.e., the convective flux is required to be constant in
time at any value of the Lagrangean coordinate M, given. For further discussions
of the “frozen - in approximation” we refer to section 2 of paper IL

Using the assumptions discussed the equations governing nonlinear radial
pulsations may now be derived directly from sections 2 and 3 of paper I. Their
analysis and notation closely follows that adopted in the study of Grott et al.
(2005). For further details we refer to this paper. Adopting a Lagrangean de-
scription with time ¢ and mass M, as independent variables mass conservation
(equation 20 of paper I) may be expressed as

% (%) = af@ (4r?v) (22)

where v denotes the radial component of the velocity and V@ has been rewritten
using equation 42 of paper I as

. 1o, 0 9
Vi = 23, (r*v) = p@MT (4mr?v) (23)
With the definition of v
or
R 24
ik (24)
the equation of momentum conservation (equation 43 of paper I) is written as
ov ap GMT
2 4y — — 2
ot B oM, r2 AQ (25)

Using 23 for V7 (together with a corresponding relation for VF) we obtain for
the equation of energy conservation from equation 25 of paper I:

u _ _
ot~ F

(47TT2’LJ) —

oM, gar. (47 Fraa) =

EYY; (47TT2FCOM) — 1Q (26)

where the radial component F' of the total heat flux is given by the radial
components of the radiative and convective fluxes, F,,q and ..., through
F = Fouq+ Feonw. In deriving equation 26 nuclear energy generation has been
disregarded (¢ = 0), since for the models considered pulsations are restricted to
the stellar envelopes, where nuclear processes are irrelevant.

Finally, we obtain for the radiative energy transport in the diffusion approxima-
tion from equation 45 of paper I:

2 E aprad
Kk OM,

where the radiative luminosity has been replaced by the radiative flux and the
temperature T’ has been expressed in terms of the radiation pressure p,qq.

Frad = —dmr (27)
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Equations 22, 24, 25, 26 and 27 together with a thermal and a caloric
equation of state form a closed system for the determination of the dependent
variables 7, v, Fyqq, u, p, p and p,qq (instead of T'). Note that F,,, is fixed in the
frozen - in approximation. The quantities Ag and p¢g occurring in the momentum
and energy conservation equations account for the artificial (numerical) viscosity
needed to treat shock waves, which typically occur during the evolution of a
stellar instability. For more information on this issue, see Grott et al. (2005).

The momentum and energy conservation equations 25 and 26 provide the
energy balance of the system by using a familiar procedure: Equation 25 is
multiplied with the velocity v and integrated over a mass element. Then equation
26 is integrated over the same mass element and added to the result. We obtain

d
% (Ekm + Etherm + Egrcw) + ALtherm + ALacoustic =0 (28)
or, alternatively, after integrating equation 28 over the time and subtracting the

initial values of Erpn, Etherm and Egrap:

Ekm + Etherm + Egrcw + /ALthermdt + /ALacousticdt =0 (29)

Equations 28 and 29 represent the energy balance of the system. They are valid
for any mass element and therefore also for the entire stellar envelope. Here,
Elin, Etherm and Ey.q, tefer to the kinetic, thermal and gravitational potential
energy content of the mass element, respectively. A Liperm denotes the difference
of the total thermal (radiative and convective) luminosity between the top and
the bottom boundary of the mass element, and A Lycoustic describes its analogue
for the acoustic luminosity Laeoustic- The latter is defined as

Lacoustic = 47TT2Up (30)

and represents the luminosity which is associated with the mechanical (acoustic)
energy flux given by the product of velocity and pressure. E.g., sound waves and
shock waves imply an energy flux and an acoustic luminosity which is described
by equation 30.

2.2. Demands on the Numerical Treatment

Apart from standard tests for the numerical scheme (e.g., validation of the code
with respect to the correct representation of shock waves according to Noh
(1987)) we require the numerical simulation to start from hydrostatic equilib-
rium and to reveal the physical instability without any additional action or
external perturbation. If the numerical scheme is too dissipative, the model
remains in equilibrium and an external perturbation would be required to initi-
ate any motion, which is not necessarily related to the physical instability. For
low numerical dissipation the system often exhibits violent initial perturbations
with amplitudes in the nonlinear regime. As a consequence, the linear phase of
exponential growth of the physical instability is not represented and the question
remains, whether the result of the simulation is a numerical artefact caused by
initial perturbations rather than by the physical instability. For a validation of
the code we therefore require that the simulation covers the linear phase. Then
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growth rates and periods of unstable modes derived from the simulation can be
compared with their independently predetermined counterparts from the linear
analysis.

To overcome the unphysical initial perturbations artificial dissipation and
viscosity or a pseudo time evolution of the grid (see, e.g., Dorfi & Drury (1987)
and Dorfi & Feuchtinger (1991)) have been introduced. As a consequence, the
physical instability then has to be triggered by an external perturbation which is
undesirable as discussed above. The unwanted initial perturbations were found
by Grott et al. (2005) to be caused by a mismatch of the prescribed initial model
and the numerical scheme used for the simulation, i.e., the initial model is not in
hydrostatic equilibrium with respect to the numerical scheme. A deviation from
equilibrium (as defined on the basis of the difference scheme used) implies ac-
celerations and thus initial perturbations which may reach the nonlinear regime.
A solution of the problem proposed by Grott et al. (2005) therefore consists of
adjusting the prescribed initial model to the numerical scheme such that the
slightly modified initial model represents a perfect hydrostatic equilibrium with
respect to it.

Adopting - with vanishing accelerations - the numerical scheme used for the
subsequent simulations a new hydrostatic initial model is constructed by an iter-
ative relaxation procedure where the original initial model is taken as an initial
guess. As a result, the artificial initial perturbations in fact disappear without
the necessity to introduce artificial dissipation. Moreover, due to minimal numer-
ical dissipation the code picks up the physical instability from numerical noise
without any further action or external perturbation. The time evolution of the
instability then enters the linear phase of exponential growth, where - for valida-
tion of the code - the pulsation period and the growth rate determined from the
simulation can be compared with the corresponding predetermined values from
the independent linear analysis.

For illustration the time evolution of the instability of a stellar model cor-
responding to a mass of M = 45M, the luminosity L = 5.37 x 10°L,, the
effective temperature Ty = 33890K and the chemical composition (X,Y, Z) =
(0.7,0.28,0.02) is shown in Figure 1, where the velocity at the outermost grid
point of the model is given as a function of time. It starts from hydrostatic
equilibrium with velocity perturbations of the order of 10 °cm/sec which corre-
spond to the numerical noise level. Then the code picks up (without any further
action or external perturbation) an unstable mode with a period of 0.62d and
a growth rate of 0.64/d which differ from their counterparts determined by the
linear analysis by less than 5 per cent. After ~ 45d the linear phase of expo-
nential growth comes to an end and the evolution enters the nonlinear regime
where the velocity amplitude saturates at a value corresponding to 19 per cent
of the escape velocity. Thus finite amplitude pulsations are the final result of the
instability of the model considered.

Apart from validation of the code in the linear regime by comparison with
the results of an independent linear analysis the compliance with the energy
balance 29 of the simulation provides an essential criterion for its quality. As an
example, the various energy terms occurring in equation 29 are given as a function
of time in Figures 2, 3 and 4 for the simulation of the unstable model considered
above in a time interval covering some pulsation periods in the nonlinear regime.
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Figure 1.  The velocity at the outermost grid point as a function of
time for an unstable stellar model with the mass M = 45M, the lu-
minosity L = 5.37 x 10°L,, the effective temperature T, ;s = 33890K
and the chemical composition (X,Y, Z) = (0.7,0.28,0.02) (from Figure
1 of Grott et al. (2005)). The evolution starts from hydrostatic equilib-
rium with velocity perturbations of the order of 10 °cm/sec (numerical
noise), enters the linear phase of exponential growth of the instability
and finally reaches the nonlinear regime where the velocity amplitude
saturates at a value corresponding to 19 per cent of the escape velocity.
Finite amplitude pulsations are the final result of the instability in this
case.
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Figure 2. The thermal energy (solid line) and the gravitational po-
tential energy (dotted line) of the stellar envelope (initial hydrostatic
values are subtracted) as a function of time for the same unstable stellar
model as in Figure 1 (from Figure 1 of Grott et al. (2005)).
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Figure 3.  The kinetic energy of the stellar envelope (solid line) and
the time integral of the difference between top and bottom boundary
of the envelope of the thermal luminosity (dotted line) as a function of
time for the same unstable stellar model as in Figure 1 (from Figure 1
of Grott et al. (2005)).
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Figure 4.  The time integral of the difference between top and bottom
boundary of the envelope of the acoustic luminosity as a function of
time for the same unstable stellar model as in Figure 1 (from Figure 1
of Grott et al. (2005)).
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From Figures 2, 3 and 4 we deduce that the thermal and gravitational po-
tential energies exceed the other terms by more than two orders of magnitude
their sum being of the order of the kinetic energy and the time integral of the
thermal luminosity which exceed the time integral of the acoustic luminosity by
one order of magnitude. Le., the terms in the energy balance 29 in general differ
by up to four orders of magnitude. Therefore a meaningful determination of the
kinetic energy (and thus also of the amplitude of the velocity) and the acous-
tic luminosity requires a relative accuracy of at least 10 ° which can never be
achieved by grid refinement or increased time resolution in standard numerical
schemes. A solution of the problem consists of adopting a fully conservative nu-
merical scheme (see, e.g., Fraley (1968) and Grott et al. (2005)) which satisfies
the energy balance intrinsically for each mass element. Necessary for full con-
servativity is that the difference operators have the same properties and satisfy
the same relations as their differential counterparts. Some aspects of the explicit
construction of a fully conservative scheme for the simulation of radial stellar
pulsations will be discussed in section 2.3.

According to equation 29 the sum of all energy terms shown in Figures 2,
3 and 4 should vanish, if the energy balance is satisfied. In other words, this
sum obtained from the results of a simulation corresponds to its error in the
energy balance. It is given in Figure 5 as a function of time for the simulation of
the unstable model considered above and found to be smaller by five orders of
magnitude than the time integral of the acoustic luminosity being the smallest
term in the energy balance 29. We conclude that all energies, in particular the
kinetic energy and the time integral of the acoustic luminosity, are determined
with sufficient accuracy to allow for meaningful statements concerning velocity
amplitudes and acoustic energy fluxes of the final finite amplitude pulsations.
Any simulation of stellar pulsations should be required to prove its quality by
presenting the energy balance and its error. We emphasize that the extreme
accuracy requirements can only be satisfied by fully conservative schemes.

Concerning pulsationally driven mass loss as a possible final result of a stel-
lar instability the time integral of the acoustic luminosity (see Figure 4) is of
particular interest. In each pulsation cycle phases of incoming and outgoing
acoustic energy fluxes prevail, i.e., the time integral of the acoustic luminosity is
not a monotone function. However, if the outgoing fluxes exceed the incoming
fluxes, the average over one pulsation period of the time integral of the acoustic
luminosity will increase with time. We deduce from Figure 4 that this holds
for the final finite amplitude pulsations of the model discussed above. A conse-
quence of the increase with time of the mean of the time integral of the acoustic
luminosity is a mean acoustic luminosity driven by the pulsations, which can be
derived from the simulations as the mean slope of the curve shown in Figure
4. Should this mean acoustic (mechanical) luminosity ultimately drive a stellar
wind, its mass loss rate may be estimated by requiring the acoustic luminosity
to be comparable with the kinetic energy per time lost in the wind.

2.3. Basic Properties of Fully Conservative Schemes

The derivation of the energy balance 28 for a mass element implies the mul-
tiplication of equation 25 (momentum conservation) with the velocity v = %
together with the following subsequent transformations of the time derivatives:
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Figure 5. The sum of all energies (thermal, gravitational potential,
kinetic, time integrated thermal luminosity, time integrated acoustic
luminosity) presented in Figures 2, 3 and 4 as a function of time (from
Figure 1 of Grott et al. (2005)). According to equation 29 it corresponds
to the numerical error in the energy balance.
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ov 0 (1,

GM, Or GM, 0 (GM, (32)
v —_ = — _ = -
r2 ot r2 ot r

Without the differential relations 31 and 32 the energy balance 28 would not hold.
As a consequence, these relations must hold also for the difference analoga of the
differential operators, if we require the energy balance to hold for the numerical
solution of equations 22, 24, 25, 26 and 27. In other words, the numerical scheme
has to be designed such that it satisfies equations 31 and 32 intrinsically.

For a numerical treatment the derivative with respect to time of a quantity
() may be represented by the difference scheme

0Q Q-Q
ot 1

where Q = Q(t) denotes the value of Q at time ¢t and Q = Q(t + 7) its value at
time t + 7. We introduce time averages Q(® by

(33)

QW =aQ+(1-a)Q (34)
with 0 < o < 1. Thus we obtain for the difference analogon of equation 31
. -9 2
(. v=v @:2 12 107w 35
v TV w T a\2" ) T (35)

If the relation 31 is required to hold also for the difference scheme we deduce
v = v1/2) from equation 35. As a consequence the difference analogon of
equation 24 is given by

ror_,/2)
. v (36)

Similarly we obtain for the difference analogon of equation 32

r—r GM, or GM, a (GM, 1 /GM, GM,
—— | 5 = — — — — — (37)
T 7(7) ot r Ot r T 7 r
If the relation 32 is required to hold also for the difference scheme we deduce

ﬁ = % from equation 37.
o

Thus we have shown that the numerical representation of the velocity and
the gravitational force cannot be chosen arbitrarily, if the energy balance is
required to hold intrinsically for each mass element, i.e., if the numerical scheme
has to be strictly conservative. Rather the time averages of the velocity and the
gravitational force are determined by the condition of full conservativity:

GM, GM,
J— % J—

1/2
v — /2 , 5 -
r r

(38)
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An immediate consequence of the time averages 38 required by conservativity is
that the numerical scheme is necessarily implicit with respect to time, i.e., at each
time step a system of implicit algebraic equations has to be solved. Concerning
the construction of strictly conservative numerical schemes for the simulation of
nonlinear nonradial stellar pulsations we refer to Glatzel & Chernigovski (2016).
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Abstract. Fourier’s traditional signal analysis does not work when ob-
servations are not equispaced in time, as is usually the case in Astronomy.
The Lomb Scargle periodogram is the favorite substitute. We will study
the basics of this technique and some care that needs to be taken for its
practical application and its interpretation.
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1. A Short Introduction

0. The structure of this class follows broadly that of the excellent article by
VanderPlas (2018). Most examples are taken from that paper, though all the
figures were rebuilt by the author.

1. There are many ways to get data in Astronomy. Let’s list a few main ones:

Binned observations: this mode is used, for example, when recording the
arrival of cosmic rays that produce Cherenkov radiation inside water-filled tanks,
thus effectively binning the events into the volumes of the array of tanks.

Time-tag observations: data obtained, for example, when recording the ar-
rival times of individual photons reflected from laser pulses which were sent to
the Moon.

Time-to-spill observations: used, for example, when recording the time re-
quired for a fixed number of gamma rays to accumulate.

Point observations: this is the typical mode of optical astronomy, where
stellar brightnesses are measured only at certain moments.

2. We will focus on point observations. To determine if there is any periodic
signal in our observation, different techniques are available:

Fourier methods: they include the standard Fourier transform, the classi-
cal or Schuster periodogram, the Lomb-Scargle periodogram, various correlation
functions, and wavelets.

Phase-folding methods: some trial periods are assumed, and the observa-
tions are folded in such a way that they fall in one cycle of those periods. If the
period is correct, the resulting points will be almost aligned, except for observa-
tional errors. The string length method determines the best period by computing

107
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the length of the path that joins neighboring points, and choosing the shortest.
Analysis of variance is based on how the points get distributed in a histogram.
The conditional entropy directly measures the disorder of the points.

Least-squares methods: among them, we will mention the Lomb-Scargle pe-
riodogram and the Supersmoother approach, which performs local least-squares
fits instead of a global one.

Bayesian methods: they include phase binning, similar to the analysis of
variance, and stochastic processes.

In the rest of the class, we will deal mainly with the Lomb-Scargle method,
which is a favorite among astronomers. To do so, we first need to talk about the
Fourier transform and the classical periodogram. You have probably noticed that
the Lomb-Scargle periodogram also appears within the least-squares methods...
we will come back to this unique feature later.

2. The Fourier Transform

3. Let’s start with the Fourier transform. What are we doing when we do this
transform? Let’s suppose a space in which the three axes are not x, ¥ and z,
but 20 = 1, 2! = z and 2% A point in this space (Figure 1, left) will have,
say, coordinates ag, a1 and as, so the point will be the second-degree polynomial
apx’ + a1z’ 4+ asx?. Any other point in this space represents another of these
polynomials. The entire space is, therefore, the complete set of second-degree
polynomials. We emphasize that this is possible because the different powers
of = are linearly independent. For example, we cannot get z? by any linear
combination of z° and z!.

4. Now, suppose we add more orthogonal axes to our space. In such a case, the
resulting space will represent higher-grade polynomials. If we keep adding axes
until we have an infinite number of them, we will have an infinite sum of terms,
what we know as Taylor’s series. Any analytical function f(z) developed as a
polynomial gives us its Taylor series:

o]
fx) :a0x0+a1x1+a2x2+'--+ajxj+...:Zanx". (1)
n=0

The square of each coefficient a; is the power with which the exponent ¢ con-
tributes to the function f. For example, a zero coefficient means that that
exponent does not contribute to the function.

5. Now, let’s suppose that the axes of our original 3D space are not powers of z
but complex exponentials of the variable —t (Figure 1, right): e~ 10t = 1, e~ 1wt
e 129t labeled by integer multiples of a given frequency w: Ow, lw, 2w. We
recall that these exponentials are again linearly independent. Let’s call ag,, @14
and ag,, the coordinates of a point in this space. As before, this point defines
a function. Changing the notation from nw to w,, our function will be written
like this:

2
f) = awoe*‘wot + awleﬂ‘“lt + ay, e w2t _ Z awneﬂ‘“”t. (2)
n=0
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Figure 1. Left: the three-dimensional space of second-degree polyno-
mials. Right: a new three-dimensional space for functions.

6. Let’s suppose again that we add infinite orthogonal axes to our space, in this
case adding also the negative multiples of the frequency w. A point in this space
will be a function composed of an infinite number of complex exponentials, each
corresponding to an integer multiple of a given frequency, i.e. the Fourier series
of a function f:

f) = +a,_ et faye Wl 4g, e 9 4
o0
— § : awne—lwnt
n=—oc
o
§ flu,nl
27T e

(3)

where in the last line we have redefined the coefficients a = g/v/2 for future
convenience. As before, the square of each coefficient |g,,,|? is the power with
which each frequency w,, contributes to the function f. Note that the coefficients
are now complex numbers, so the square means the square of their moduli.

7. We want to move now from discrete to continuous developments. To this
end, we take all the real values of the frequency instead of an infinite countable
number of them. In this way, the discrete subindexes of g become a continuous
variable, the w,, become the real variable w, and the summation over w,, becomes
an integral over w, so we obtain

£(t) dw g(w)e ", (4)

vl

which is called the inverse Fourier transform of the function g.
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The amplitude |g(w)|?, now a function of w, is called the power spectrum
of f. In other words, the function g{w) contains all the information about how
much power there is in each w. This is very important: if we could compute ¢
from a given f, we would know how much power a signal with frequency w is
contributing to f.

8. So let’s see how to calculate g given a function f. Starting from Eq. (4), the
first step is to multiply both members by a complex exponential with a frequency
w’, a new variable. Then, we integrate over ¢, covering all possible times. The
next step is to interchange the integrals of the second member; g(w) can come
out of the integral over . The inner integral is then one of the definitions of the
Dirac delta.

The Dirac delta is a distribution that has the following property, among
others: if multiplied by another function and integrated, and if the interval of
integration contains the zero of its argument, then the result is the other function
evaluated at the point where the Dirac delta is zero. After doing this integral,
the variable w has gone, so we may eliminate the prime. Then we obtain

1 o iwt
- / defe e, (5)

that is, we have solved for our function g, which is the Fourier transform of the
function f. Sometimes it is convenient to express the transform as an operation
on f giving g as the result. In this case, the transform is seen as a functional,
that is, as an operator on a function, and the notation is usually g(w) = FIf].
An operator notation can be used for the inverse t00: f(t)=F gl

9. Some interesting properties of the Fourier transform are:
Time scaling: F[f(at)] = ﬁ 9(2).
Frequency scaling: F ![g(bw)] = % (%)
wto

Time shifting: F[f(¢ —to)] g(w)e! .

Frequency shifting: F 1[g(w — wo)] = f(t) g~ 1wol,

Ifft)eR = g(-w) =gw)* = |g(-w)|* = |gw)[, ie. the
power spectrum is even. Physical data are always real, so their power spectrum
is always even. If, in addition, f(¢) is even, then g(w) is real and even too.

10. Recapitulating, the power spectrum is a positive real-valued function that
quantifies the contribution of each frequency w to the total signal. Let’s see some
examples (see Figure 2). All these examples are real even functions, so we may
plot only the real parts of the Fourier transforms.

Suppose that we have a sinusoidal signal, with a period T and frequency
w. Its Fourier transform will be a pair of Dirac deltas, at frequencies w and —w.
That is, the only frequency contributing to our signal is w.

Now, let our signal be a Gaussian, with dispersion o. Its Fourier transform
will be another Gaussian, but with a dispersion which is inversely proportional
to the original one. This is a characteristic of the Fourier transform: the wider
a feature in the original signal, the narrower the corresponding feature in the
space of frequencies, and vice versa.

Now let our signal be a top hat function, that is, a constant signal only
in a given time interval. On, off. The Fourier transform is a sinc function,
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Figure 2.  Left: different signals. Right: their Fourier transforms
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i.e. sin(nz)/(mz), with a width again inversely proportional to the width of the
original signal.

If our signal is a Dirac comb, that is an infinite series of Dirac deltas evenly
spaced in time representing a periodic instantaneous signal, then the Fourier
transform is another Dirac comb, but with spacing in frequency inversely pro-
portional to the time interval of the signal.

11. An important operation that we are going to use is convolution. The con-
volution f * g between two functions f and g is defined as the integral over time
of the product of the two functions, but with one of them delayed in time:

(f*g)(t) = / At f(t) glt — 1), (6)

This is equivalent to sliding one of the functions over the other and calculating
the integral at each step.

There is a convolution theorem that establishes that the Fourier transform of
a convolution is equivalent to the point-to-point product of the Fourier transforms

of each function:
FLf =g] = F[f]- Flgl. (7)

A corollary of this theorem is that the Fourier transform of a product of functions
is equivalent to the convolution of the Fourier transforms of each function:

Flf - gl = FIf] = Flgl. (8)

12. Now, when we observe a signal, we never observe the true signal. We are not
talking about errors, but about the observing window. For example, if we observe
the magnitude of a star, we are imposing both a top hat between our first and
last observations and a discretization because we do not observe continuously.
So, our observed signal will always be affected by a window function W. Then,
when we compute the transform of an observed signal, a convolution with the
transform of the window will always be present.

13. Let’s see an example of this (Figure 3). Let’s take a signal made up of four
sines, with different amplitudes and frequencies. If we observe this signal contin-
uously between two moments of time, that is, with a top-hat observing window,
the resulting observed signal will be the point product of the two functions.

What happens in the frequency world? The transformed signal is, as ex-
pected, a set of peaks at the four frequencies that make up the signal. The
transformed window will be, as we already know, a sinc function. We have to
convolve both transforms to obtain the Fourier transform of the observed signal.
As we can see in Figure 3, the form and width of the sinc function is replicated
at each of the peaks of the original transform.

14. Let’s see another example (Figure 4). Our original signal is now a simple
Gaussian, but observed only in a set of moments uniformly spaced in time. Thus,
our observed data is a series of Dirac deltas with amplitudes modulated by the
Gaussian. The frequency content of the original signal will be a Gaussian, and
that of the window will be a Dirac comb. When they are convolved they yield
our Gaussian replicated on each of the peaks of the comb.
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Signal Signal

Window Window

Observed Observed

Figure 3.  Left: a signal, a window and their point-to-point product.
Right: their respective Fourier transforms.
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Figure 4. Left: another signal, another window and their point-to-
point product. Right: their respective Fourier transforms.
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15. The last example leads us to one of the problems of all this. Let’s see. Let’s
take again the last Gaussian as the original signal. Now, we observe again the
signal with a Dirac comb, but with a lower frequency than before (Figure 5).
Therefore, we are observing now a few peaks. On the spectra side, we have our
usual spectrum for the real signal, and a Dirac comb for the spectrum of the
window, though with teeth closer to each other. Note in the resulting convolved
spectrum how the Gaussians have no place to fit between the teeth of the comb.
We can lose all hope of recovering the real spectrum.

16. This brings us to the Nyquist limit. Recapitulating: a function uniformly
sampled in time can be fully recovered only if its Fourier transform can fit entirely
between the teeth of the comb. Therefore, let’s suppose we sample our signal at
time intervals T. The sampling rate, let’s call it wyg, is then 27 /7. To recover the
signal, it should be made up only of frequencies in between +wq/2 to fit between
the teeth.

The traditional Nyquist theorem goes in the other direction: to fully rep-
resent the frequency content of a band-limited signal +wp, we must sample the
data with a rate of at least 2wyq, called the Nyquist frequency.

17. Now, our last step towards the periodogram is to consider the discrete
Fourier transform. Let’s take an infinitely long and continuous signal f(¢), and
let’s sample it with a Dirac comb with spacing At. The observed signal will be
the point-to-point product of both:

Jovs(t) = (1) - T ac(2), (9)

where IIIa; symbolizes a Dirac comb with spacing Af. Note that the signal
is known only at the times nAt, with n an integer. If we compute its Fourier
transform, we obtain

Flhonl) = 2= 3 fuelm" (10)

n=—oo

where we have used f,, = f(nAt) to simplify the notation.

However, in a real observation, we do not take an infinite number of samples,
but a finite number of them. This is equivalent to applying a top-hat rectangular
window of width N At where N +1 is the total number of samples, so if we choose
arbitrarily ¢ = 0 at the first observation, the summation goes only from 0 to N:

N
Fllonl(w) = 2= > fuei=r (1)
n=0

18. Note that, by construction, the last expression is the Fourier transform of the
original signal sampled with a Dirac comb and convolved with a sinc function of
width 47/T = 47 /(NAt) (because we have applied a top-hat window of width
NAt). Then the spectral Dirac comb will be smeared with this width. Now,
according to the Nyquist theorem, two values of the spectrum at frequencies
within 27 /(NAt) will not be independent, but they will belong to more than
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Figure 5.  Left: same signal but another window, and their point-to-
point product. Right: their respective Fourier transforms. The gray
lines are the individual peaks generated by each tooth of the Dirac
comb.
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one peak. Then, to get the maximum information we should sample the spectrum
at IV evenly spaced frequencies with a separation

2w
Aw=——. 12
YT NAt (12)
If we call kAw the resulting frequencies, we get
XN
Flfopsl (kAw) = —— . elkAwnAL 13
(k) = = 32 (13)

Defining for convenience

fi= \/g Flfors] (kAw), (14)

N
o 1 .
fim ==Y e, (15)
n=0

we finally get

which you will recognize as the discrete Fourier transform of the set f,,. Note that
the spacing of the frequencies is optimal in terms of both the Nyquist sampling
and the effect of the finite observing window.

3. The Periodogram

19. We are now in a position to study the periodogram. The classical peri-
odogram was defined by Schuster (1898) as

N
an eiwnAt
n=1

If you look closely, you will find that it is the square of the modulus of the
discrete Fourier transform of the set f,,, but evaluated at any real frequency.
What is the maximum frequency at which we should evaluate this func-
tion? Naturally, at the Nyquist frequency, since beyond that there is no new
information. The spectrum begins to repeat itself, a feature called aliasing.

2

Po(w) = & (16)

20. Now, we have to deal with a very important problem, always present in
Astronomy: non-uniform sampling. In practice, we do not sample a signal at a
periodic rate, but at a set of times £, unevenly distributed:

N
Wiy = > 0n(t — o), (17)
n=1

where dp is the Dirac delta. The observed signal is then a product of the true
signal by this window, resulting in an uneven distribution of values of the func-
tion:

N
fobs(t) = F(£) - Wey (8) = Y f(ta)dn(t — ta), (18)

n=1
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and the Fourier transform of the observed set will be the convolution of the real
signal with this irregular window:

Flfons]l = FIf1+ FWie,y]- (19)

21. Let’s see what happens. Let’s take a Gaussian as a model of our signal.
Figure 6 (left) shows the original signal, an irregular window, and their product
which is the observed function. On the spectral side (Figure 6, right), see what
happens with the spectrum of the window: it has lost all regularity. It is no longer
a Dirac comb, but a completely irregular function. The convolution results in
the ugly Fourier transform at the bottom. Note that the original Gaussian is
almost lost.

We conclude that an irregular spacing of the observations leads to an irreg-
ular spacing of frequency peaks in the window transform, and that there is no
exact aliasing of the true signal, so we cannot recover the true Fourier transform.

22. A question immediately arises: what is now the Nyquist frequency? The
question is relevant because the uneven sampling has destroyed the symmetry
on which the concept of Nyquist frequency rested. There are in the literature
several attempts to define a substitute for the Nyquist frequency: the inverse of
the mean of the sampling interval, their harmonic mean, their median, or even
the minimum among them. It turns out that none of these approaches is correct.
The practical pseudo-Nyquist frequency can be far larger than any of these.

23. Let’s see an example. We analize 100 samples taken at random times
between 0 and 1200 of the signal

f(t) =10 4 7.5sin(100¢) 4+ 13 % white noise. (20)

Note that the only frequency present in our signal is w = 100. Figure 7 (left)
shows the resulting observed signal. Note that a frequency of 100 corresponds
to a period of 27/100, something that is not (and cannot be) visible at all in the
plot.

24. Figure 7 (right) shows the periodogram of this set, in an interval of frequen-
cies that includes 100. Surprisingly, the periodogram recovers the true frequency
even when the signal is invisible to the eye! But see also the proposed pseudo-
Nyquist frequencies. With none of them we could have recovered the true result.
Note that we have extended the periodogram beyond 100 because we knew that
that was the target frequency. But in practice, this is precisely the unknown.
How far do we have to extend the periodogram, that is, what is an effective
pseudo-Nyquist frequency?

25. Eyer & Bartholdi (1999) have proved this theorem: the equivalent Nyquist
frequency is m/p, where p is the largest factor such that each spacing At; is
exactly an integer multiple of this factor. In other words, p is such that we can
put each observing time in a multiple of it. But a corollary is that if any pair of
observation spacings has an irrational ratio, then the pseudo-Nyquist frequency
is infinity! Fortunately, the observations always have a finite precision, so the
limit frequency in practice can be computed as wny = 7107, where D is the
number of decimal places of the observations.
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Figure 6. Left: a Gaussian signal, an irregular observing window,
and their point-to-point product. Right: their respective Fourier trans-
forms.
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Figure 7.  Left: an irregular sampling of a sinusoidal signal plus noise.
Right: its periodogram, with some pseudo-Nyquist frequencies shown.

26. We finally got to the Lomb-Scargle periodogram. The classical periodogram
can be rewritten

1 [ /X \2 /N % &
Ps(w) = i (Z fn cos(wty) ) + ( an sin{w ty,) ] . (21)
n=1 / \n=1 /

where we have separated the exponentials in sines and cosines. This classical
periodogram has nice statistical properties. For example, if the signal is pure
Gaussian noise and it is uniformly sampled, then its values are x? distributed.
Therefore, when a signal is present it is easily detectable because the distribution
of values of the periodogram will not be x? distributed. The problem is: when
the sampling is irregular, this property is completely lost.

27. Scargle (1982) was the one who solved this problem. He assumed a general-
ization of the periodogram,

(I costeoftn — 7)) (S fu sin(wltn — 7))
| 942 LR 2B? — (22

P(w) =
with A, B and 7 functions of w. He proved that the three functions can be chosen
so that a) the periodogram reduces to the classical one when the observations
are equally-spaced in time; b) the periodogram’s statistics are computable; and
c¢) it is insensitive to time-shifts.

28. Here is the expression obtained by Scargle:

N \ 2 ‘N \\2
(Z fn cos(w [ty —7]) ! (Z fn sin(w [ty — 7]) !l
PL(w) > n=1 5 / qo_se=l / ey (23)

N
2 Z cos?(w [t — 7)) 2 Z sin?(w [t, — 7))
n=1
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with

N
Z sin(2wt,,)
n=1

N
Z cos(2wt, )
n=1

Note that 7 depends only on the times of observation.

1
T(w) = % arctan

(24)

29. As we have anticipated, the Lomb-Scargle periodogram has also a least-
squares interpretation. Lomb (1976) showed that this periodogram is obtained
if we fit a model to our data consisting of a sinusoid at each candidate w:

y(t,w) = A, sin(wt — @y,). (25)

As usual in the least-squares method, we compute the merit figure x? by summing
up all the squares of the differences between the model and the observations:

N
@) =3 (n — y(tn,w))”. (26)

n=1

If we call ¥? the value obtained by minimizing Eq. (26) at each frequency with
respect to the amplitude A, and the phase o, and X3 the dispersion of the
observations, then the Lomb-Scargle periodogram can be written thus:

Plw)=X0"X (27)

30. The least-squares interpretation of the Lomb-Scargle periodogram allows
treating measurement errors easily. If each observation y, carries an error oy,
then the standard approach of the least-squares method is to add those errors in
the denominators of the y? statistic. Therefore, we do the same in our case:

=3 (W) (28)

n=1

After some algebra, the resulting periodogram is the same as the standard Lomb-
Scargle periodogram, but every sum of the expression adds a weight w,, computed
as usual from the observational errors:

-2
n__ (29)

Thus for example,

N
an cos(w [t, —7]) becomes anfn cos(w [t, — 7]). (30)
n=1

n=1
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Figure 8.  Left: random sampling of a sinusoidal signal plus noise,
centered at a value of 16. Right: its periodogram.
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Figure 9.  Left: the same random sampling, but now centered around
0. Right: its periodogram.

31. Another important issue relative to periodograms is that of the mean of the
observations. Let’s work with the signal

f(t) =16 4 2sin(wt) + white noise, (31)

with w = 27 - 0.3. We generate 100 random observations between 0 and 100 in
time, shown in Figure 8 (left) where we have folded all the observations modulo
the period. The points were repeated in a second period to better visualize the
results. Note that the data are centered around 16; this might be the result of
observing the magnitude of some variable star.

The periodogram, in cycles per unit time, is shown in Figure 8, right. We
look for a feature at a frequency 0.3, but there is nothing! In fact, there is not
even a peak! What is happening here is that the periodogram is fooled by the
mean value of the data.

32. Let’s center the data around zero (Figure 9). Now it is! A clean, superb,
lonely peak at a frequency of 0.3. The moral is: always center the data before
computing o periodogram.

33. There is another problem to take care of. Let’s suppose that we are mea-
suring the magnitude of some variable star, with the same signal as before with
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Figure 10.  Left: data with an unreachable (gray) band. Right: its
periodogram.

Input data

phase

Figure 11.  The signal that the periodogram sees (solid green curve).

frequency 0.3, but that our telescope has a limiting magnitude. Figure 10 (left)
shows an example; the data is considered unreachable above magnitude 16.8.

Let’s compute the periodogram (Figure 10, right). As we can see, it shows
that 0.6 is the main frequency, a harmonic of the true one. What happens here is
that the periodogram tries to adjust the frequency to the data it has, obtaining
the signal shown in Figure 11.

34. The solution is to compute the periodogram with a so-called floating mean,
also known as date-compensated discrete Fourier transform or generalized Lomb-
Scargle periodogram. It consists of adding an offset to each frequency:

y(t,w) = yo(w) + Ay sin(wt — @y, ). (32)
Then, this new problem has the offset yo(w) as a third parameter to be found,

along with amplitude and phase. To simplify the notation, we define the following
abbreviation:

N
[fc] = wnfn cos(w[t, — 7)), (33)
n=1
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Figure 12.  Left: floating mean periodogram. Right: the recovered
signal (solid red curve).

and similar expressions for other cases. With this notation, the resulting peri-
odogram with floating mean is

' _ 1 fed = [fleD? | ([fs] = [£][s])?
s = (Vo + o). .
with 5 -
T(w) = - arctan ( G LI \ : (35)

2w \[e? =% = ([d° = [s]*) /

35. Let’s compute the periodogram of our limited-magnitude sample with a
floating mean (Figure 12, left). Now it is. The correct frequency is recovered with
high flying colors. The periodogram can see now the true frequency (Figure 12,
right).

36. At last, the problem of uncertainty. We, as scientists, are supposed to give
observational results with their error bars. For frequencies, we usually take the
width of a line as a measure of its uncertainty. But since a periodogram is a
set of values at discrete frequencies, we do not have proper lines. However, we
can get a width of a line if we compute the values of the periodogram at many
frequencies between those already computed, thus achieving a quasi-continuous
curve by joining the values at each frequency.

37. We take as a benchmark
f(t) = sin(wt) + white noise, (36)

with w = 27 - 1, sampling it at N points randomly chosen between time 0 and
100. The periodogram, as said, is constructed with many more frequencies than
needed, in such a way that joining its values a continuous-like line can be traced.

If we fix the signal-to-noise level at 10 and change the number N of samples,
we obtain the three curves of Figure 13 (left). As we can see, the width of the
peak, to first order, is invariant with respect to the number N. This is somewhat
unexpected, because we may think that increasing the number of points would
improve the precision. If we keep fixed the number of samples but change the
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Figure 13.  Left: the width of a line does not depend on the number
of samples. Right: the width of a line does not depend on the signal-
to-noise ratio.

signal-to-noise ratio from 10 to 1 to 1/10 (Figure 13, right), it happens the same
as before. Noise is also not a measure of precision.

We conclude that the width of a line of the periodogram does not depend on
either the number of observations or their signal-to-noise ratio. If it is frequencies,
we cannot give the reader a number plus minus an error.

38. What we can give instead is the false alarm probability of a peak. The idea
is to compare the height of a peak against the peaks of the background; in other
words, to quantify the significance of a peak. The false alarm probability of a
peak is the probability that a dataset which is pure noise would have a peak of
magnitude equal to or greater than that of the peak in question.

Scargle (1982) proved that if the data is pure Gaussian noise, then the values
of the periodogram follow a x? distribution with 2 degrees of freedom, that is, a
decreasing exponential. Let’s call Z a value of the periodogram at an arbitrary
frequency w. Then the probability density function of Z is

pz(z) = Prob(z < Z < z 4+ dz) = exp(—z)dz. (37)

Therefore, the cumulative probability is
Fz(z) =Prob(Z < z) = / pz{(Z)dZ =1 — exp(—2), (38)

0

so the statistical significance of a given power at a preselected frequency is
Prob(Z > z) =1 — Fz(z) = exp(—2). (39)

In other words, it becomes exponentially unlikely that such a power Z or greater
can be due to a chance noise fluctuation.

39. Now, let 7, be the value of the maximum peak of the periodogram. We are
now choosing a specific value of frequency among N values, not any frequency.
Then, the probability of that power being less than 2z will be that of one frequency
but to the power of N:

Fz (2) =Prob(Z,, < z)=][1 - exp(—z)]N, (40)
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and the statistical significance of such a power will then be:

Prob(Zm > 2) =1—Fz,(2) =1 —[1 —exp(—2)]". (41)

40. Finally, we want a value of z such that a maximum with this value of 2z has
a probability p of being obtained by chance. For this, we just need to solve for
z in the above expression:

s=—ln [1 —(1-pVN]. (42)

Different values of z for different probabilities p can then be plotted along with
the periodogram to assess the significance of the lines. In practice, the presence of
the window will make the powers at adjacent frequencies not independent, so we
have to estimate how many independent frequencies there are in the spectrum,
and replace the N of the exponent with this effective number. A good choice is
that proposed by Press et al. (1992), p. 570.

Acknowledgments. Iwould like to thank the SOC and LOC for a beautiful,
pleasant and enriching School.

References

Eyer L., Bartholdi P., 1999, A&AS, 135, 1

Lomb N. R., 1976, Ap&SS, 39(2), 447

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numer-
tcal Recipes in Fortran 77: The Art of Scientific Computing, Cambridge
University Press, 2nd edition

Scargle J. D., 1982, ApJ, 263, 835

Schuster A., 1898, Terrestrial Magnetism (Journal of Geophysical Research),
3(1), 13

VanderPlas J. T., 2018, ApJS, 236(1), 16



Pulsations Along Stellar Evolution
VIII LAPIS Summer School

AAA Workshop Series 12, 2021
M. Kraus & A.F. Torres, eds.

Wavelets Analysis for Time Series

A. Christent

YUniversidad de Valparaiso, Gran Bretarnia 1111, 2340000 Valparaiso,
Chile

Abstract. Wavelet analysis has been widely used to analyze time series
and has countless applications in astronomy. Because of its characteristics
it is a method that is well suited to approximate functions, eliminate
noise, detect points of change, discontinuities and periodicities. In this
article an introduction to the wavelet theory and its use in time series is
presented. Numerical simulations and some real examples are developed
in the software R.
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1. Introduction

Fourier transform is widely used in signal processing and analysis and for its
inherent characteristics it has had satisfactory results in the study of signals
that are periodic and regular enough, but the same is not true when their spectra
vary over time (non-stationary signals). If the function f(z) to be decomposed
is a time series, and we think to analyze it, we have to take into account that
the functions of the Fourier base are of infinite duration in time, but local in
frequency. The Fourier Transform detects the presence of a certain frequency
but does not provide information about the evolution in time of the spectral
characteristics of the signal. Many temporal aspects of the signal, such as the
beginning and end of a finite signal and the instant of appearance of a singularity
in an instant of time, cannot be adequately analyzed by Fourier analysis. Even
so, Fourier analysis is a cornerstone for the development of other mathematical
and statistical theories including Wavelet analysis. In the following subsection
we present the main concepts of Fourier analysis, which will be needed for the
reading of the rest of the Chapter.

1.1. Some Concepts From Fourier Analysis

In this section we will review some concepts of Fourier analysis necessary for the
following sections. Consider the space of all complex-valued functions f on R,
such that f is absolutely integrable (ie: [* |f(z)|dz < co) and denote it as
LY(R) (Hirdle et al. (1998)). For f € L'(R), define the Fourier Transform of f
by

fo= [ e f(a)da. 1)

— 0
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If f(£) is also absolutely integrable, define the Inverse Fourier Transform by

fw) =5 [ i )

—0

at almost every point z. By extension, the Fourier transform can be defined for
any f € L*(R) with [%_|f(2)|*dz < oo.
2w

Given a 27-periodic function f on R, such that f € L*(0,27) (57 |f(z)[*dz <
00), it can be represented by its Fourier series by

@) =3 cre, (3)
k

where ¢ = 3 fo% f(t)e **dz is named the k-th Fourier coefficient. By period-
icity, this holds for all z € R.

Therefore there exists the basis of functions, {e~ %%, in L2(R), for which we
can write any function in L(R) as an infinite linear combination of the members
of this basis of functions. If we keep a finite number of terms on the right hand
side of the equation (3), we will obtain an approximation of the function f(z).
Due to the characteristics of the Fourier series (the functions sin(z) and cos(x)
in e~*** are non-zero over almost the entire domain), a large number of terms
in the series are needed to get a good approximation of f(z). In wavelet theory
an alternative basis of functions is sought that has the property of being able to
write any function in L?(R) as a series of the basis functions, but that they take
values close to 0 outside a bounded interval, which allows a local adjustment in
time and the use of few terms in the series to obtain a very good approximation
of f(x).

Let {aj}rez denote an infinite sequence of real or complex-valued variables
with the property that Y>> _|ax|? < co what ensure that all the quantities we
deal with are well defined. Then the complex function given by

A(r)= > age 2, (4)

k=—00

is called the Discrete Fourier Transform (DFT) of {ay}rez, where r € R is
a variable known as frequency (see Percibal & Walden (2000)). For the inter-
pretation of the formula in equation (4), |r| is the number of cycles that the
sinusoidal curves in the real and imaginary terms of the function e 2" —=
cos(2mrk) — isin(2nrk) (i.e. cos(2nrk) and —sin(27rk), respectively), go over
when % sweeps from 0 to 1. Any negative frequency » will map to some posi-
tive frequency when a physical interpretation is required (see Percibal & Walden
(2000), Exercise [2.1]).

As intuition, if | A(r)]| is large (small), then the sequences {a;} and {e
have a good agreement (bad agreement).

The sequence {a;} can be reconstructed or recovered from its DFT, A(r),
by

7i27r7"k}

1
2

ap = A(r)el®kqy., (5)

[
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where k& € Z. The larger the value of |A(r)|, the more important sinusoids of
frequency r are in reconstructing {ax}. If {a} is a finite sequence for instance
for Kk =1,---, N, it is extended to k € Z by defining a5, = 0 for all £ < 0 and
k > N. In this case, A(r) = fozl ape 12mTE,

Filtering: In wavelets context it is often used the term “filter". Consider
two infinite sequences of real or complex-valued variables, {ar} and {bs}, satis-
fying > o0 |ax]? < o0, Sope o |bk]* < oo. The convolution of {a;} and {by}
is given by

0

(axb)y = Z by (6)

U=—00

This definition led us to the notion of filtering used in engineering. If we consider
{ax} in equation (6) as a filter and {b;} as a sequence to be filtered, then their
convolution, {(axb)t}, is the filtered version of {b }, filtered by the sequence {ay}.
There are ‘low-pass’ filters that preserve low frequency components and attenuate
high frequency ones; and there are ‘high-pass’ filters that make the contrary.
Finally there is a cascade of filters, involved in wavelet coefficients computation
from data (see section 3), which is nothing more than the consecutive application
of a set of filters to a sequence, one after the other.

1.2. Short Time Fourier Transform

An intermediate step between Fourier and Wavelet analysis was the use of the
Short Time Fourier Transform (STFT) to detect local phenomena in time. It per-
forms a time-dependent spectral analysis. The signal is divided into a sequence
of time segments (depending on a window defined for this purpose) in which the
signal can be considered as quasi-stationary and then the Fourier Transform is
applied to each segment. Window functions are used to perform this procedure.
To observe a signal over a finite period of time, we multiply it by a window
function. The signal is divided into short fragments (short time intervals) delim-
ited in time, by means of a window function. The segments sometimes overlap.
Through the individual spectral analysis of each windowed segment, a sequence
of measurements or spectra is obtained, what constitutes the time-varying spec-
trum. The four most common window types are the Rectangular window, the
Hanning window, the Hamming window and the Blackman window.

Three kinds of examples where STF'T has been applied are presented below:
two curves with marked periodicities that change according to the time instant
in Figure 1, two curves without periodicities in Figure 3 and one curve with
variable periodicity in Figure 4.

Figure 1 shows the STFT of two sinusoidal curves, a curve with three dif-
ferent periods and amplitudes:

folz) =sin(0.27x), fi(z) = L.5sin(0.57x), fo(z) = 2sin(0.87x),

for the upper left panel, and

falz) = sin(0.6z), fa(x) = 0.5sin(0.5z), f5(z) = 2sin(0.1z),
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for the lower left panel. In right panels of Figure 1 the computation of the
corresponding STFT is shown. Time-slices of length 80 are extracted from the
vector (in case of short vectors the window size is chosen so that 10 windows fit
in the vector). The shift of one time-slice to the next one is given by 24 (for short
vectors the increment is selected so that 30 increments fit in the vector). The
values of these time-slices are smoothed by multiplying them with a Hanning
window function. For these obtained windows, the Fast Fourier Transform! is
computed. Then each window takes a segment of length 80 in time and is shifted
by 24 which produces 414 calculations of the Fast Fourier transform. Therefore a
matrix of 414 rows is produced where each row of the matrix contains the Fourier
coefficients of one window which are plotted in a scale of 64 gray values, where
white corresponds to the minimum value and black to the maximum. The right
panel of the Figure 1 shows how the Fourier transform changes over time, which
gives an indication of the change in periodicity over time. This is an advantage
over the use of periodograms based on the Fourier transform in which the periods
present are shown but without indicating their variability over time (see Figure
2 where the Lomb Scargle periodogram of the sine wave 1 is displayed). With
wavelet analysis it will be possible to construct a time-sensitive measure, of the
STFT type, where on the ordinate axis the exact time is shown.

In the Figure 3 two curves and their STFT are shown. On the left upper
panel a Gaussian white noise is plotted. This curve is completely random with
no periodicities, therefore no time with a specific value is highlighted in its STFT
(right upper panel). On the left lower panel a sample of an Autoregressive Mov-
ing Average (ARMA) process with parameters (2,2) is shown. This is a linear
model for time series analysis and together with Autoregressive Integrated Mov-
ing Average ARIMA and Continuous Autoregressive Moving Average CARMA
models have been used to model light curves in astronomy (Caceres (2019), Ey-
heramendy et al. (2018), Kelly et al. (2014)). The ARMA process is a stationary
process with constant expectation and variance, so its representation contains
no trend or periodicity. As a consequence, the STFT is less random than that of
white Gaussian noise but with a time-varying Fourier transform. A curve with
time-varying periodicity is plotted on the left panel of Figure 4. It can be seen
that its STFT detects how the frequency decreases over time, although the exact
time at which the changes occur or the exact trend of change is not visible due
to the displacement of the windows used in the STFT calculation.

STFT allows that a certain location of a local phenomenon in a signal is
detected. However, only the time interval in which the local phenomena occur
will be known, since the location depends on the width of the window chosen.
Moreover, the events will not be able to be differentiated or found if they are
very close to each other, since it is not possible to distinguish different behaviors

'Fast Fourier Transform: Calculating the DFT is time consuming and requires on the order
of N? floating point multiplications. As many of the multiplications are repeated by varying
the indexes, an efficient algorithm is used, called Fast Fourier Transform (FFT) which counsists
of a collection of routines designed to reduce the amount of redundant calculations. Different
implementations of the FFT have different features and advantages. One of the algorithms used
is the "split-radix" algorithm which requires approximately N log,(N) operations (Fischer-
Cripps (2002)).
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within the same window width. A mathematical tool to solve these problems is
the Wavelet Transform.

In this Chapter, the theory of Wavelet analysis is described in Section 2
including multiresolution analysis. Section 3 describes the Cascade Algorithm
and the discrete wavelet transform while Section 4 is devoted to continuous
wavelet transform and its applications. Finally, in Section 5 we present our
conclusions.

2. Theory of Wavelet Analysis

We can say that the theory of the analysis of the wavelets began with Mr. Joseph
Fourier (1807), with his theory of frequency analysis, today often referred to as
Fourier analysis. After 1807 and from the development of the Fourier convergent
and orthogonal systems, the notion of frequency analysis led to scale analysis.
The first mention of the wavelets appears in an appendix of the thesis of A. Haar
(1909). The wavelet theory was developed mainly in the 80’s by Meyer (1986),
Daubechies (1988), Mallat (1989) and others.

Wavelets are used in a large number of applications, among them: astron-
omy, acoustics, nuclear engineering, sub-band code, signal and image processing,
neurophysiology, bioinformatics, genetics, music, magnetic resonance imaging,
classification of words in a text, optics, fractals, seismic turbulence prediction,
radars, human vision, statistics (time series, correlations, stochastic processes,
point processes, non-parametric regression, regression with census data) and
mathematical applications such as: in pure frequency identification, eliminating
signal noise, detecting discontinuities and cutting spots, detecting self-similarity
(fractals), compression of data.

In this Chapter the use of wavelets focuses on their application to time series
(i.e.: sequence of observations indexed on an ordered set of indices I which can
be a discrete set of values such as integers or a subset of the real line, based on
an independent variable ¢t € I). The variable t can be taken as time, depth, or
distance along a line, among others. Examples of set of indexes are I = (0, +00),
that is, all ¢ > 0 are possible indexes, and I = {0,1,2,--- ,n}, where n can be
any integer greater than 2.

The main points of the theory of wavelet analysis are developed to later an-
alyze its use in applications through approximations, scalograms built from the
wavelet transform, signal reconstruction, among others. The Wavelet Transform
is efficient for the local analysis of locally changing and non-stationary signals
and, like the Windowed Fourier Transform?, assigns a time-scale representation
to the signal. The time aspect of the signals is under consideration. The main
difference with STFT is that the Transformed Wavelet has multiresolution anal-
ysis with variable windows. The analysis of higher range frequencies is done
using narrow windows and the analysis of lower range frequencies is done using
wide windows (Poularikas, 2010).

2Short Time Fourier Transform
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Figure 1. Examples of STFT. On the left panels, it can be seen two
different sinusoidal curves and on the right panels their STFT. First,
time segments of a fixed length are extracted from the data vector.
This window is moved along the time axis by a fixed amount possibly
smaller than the window size, which may produce an overlap between
the time segments. The values of these time intervals are smoothed by
multiplying them by a specified window function. For the windows thus
obtained, the fast Fourier transform is calculated. For the data in the
figure, segments of 80 time units were used. They were incremented
by 24 units to obtain the next segment, which produced overlapping
segments, yielding 414 windows. For each window 64 Fourier coefficients
were calculated. The figure shows: on the x-axis the 414 windows and
64 cells on the vertical axis of each window which were colored with
a gray scale according to the magnitude of the Fourier coefficients. In
the figure only the cells with gray colors are observed, the rest are only
white. The dark regions in the graph correspond to high values of the
coefficients at the particular time/frequency location.
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Figure 2.  In the figure the Lomb Scargle periodogram of Sine wave 1
is shown. The frequencies of the curve 0.1 and 0.4 are clearly evidenced
and more weakly the frequency 0.25.

Wavelets (small waves) are families of functions which, if they are translated
and dilated, allow us to obtain an orthogonal base of functions in L?(R). A linear
combination of the elements of this base of wavelet functions is used to represent
a signal f(¢).

The classical Fourier analysis has been widely used in the problem of recon-
structing a function f from dilations of a fixed sinusoidal function x — 2™,
when writing f(z) = fezmﬁrf(f)df. The Fourier transform, f(f), is considered

the amount of sinusoidal oscillation e?™* present in the function f. Sinusoidal
function bases are also used in Fourier series.

In the same way the wavelet basis of functions allows us to reconstruct the

original signal through the inverse Wavelet Transform. There are several base
wavelet functions, depending on the chosen family: Haar, Daubechies, Morlet,
Symmlets, among others. Depending on the selected wavelet family, a different
base function is used (first brick in the construction) and a certain base of func-
tions is obtained which will allow the wavelet analysis to be performed. The
main advantage of Wavelet analysis is that it is not only local in time, but also
in frequency.
This feature allows using the continuous wavelet transform to detect an event in
the data, either the period of a time series, a change point in the series, a dis-
continuity in a density function, and to know the moment (time) or abscissa at
which it occurs. For example, knowing the time interval during which a detected
period is present in the brightness measurements in a light curve, the moment
when the flow of a river changes drastically, the day when an economic variable
produces a change in its modeling.

Another feature of a wavelet functions basis is that any function in the
function space L? can be decomposed as an infinite sum of functions in the
wavelet basis, as with the Fourier series, but because of their great flexibility to
approximate functions efficiently only a small number of summands are needed
to produce very good approximations. The latter is because wavelet functions
vanish outside a bounded interval and the basis of functions is formed by a count-
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Figure 3. Examples of STFT: The upper panel shows a curve of 500
data points from a Gaussian white noise and its STFT. In the lower
panel, the plots show the curve of a sample from an ARMA (2, 2) process
and its STFT. For the data in the upper right panel of the figure,
segments of 50 time units were used. They were incremented by 16
units to obtain the next segment, which produced overlapping segments,
yielding 29 windows. For each window 64 Fourier coefficients were
calculated. The figure shows: on the x-axis the 29 windows and 64
cells on the vertical axis of each window which were colored with a
gray scale according to the magnitude of the Fourier coefficients. The
dark regions in the graph correspond to high values of the coefficients
at the particular time/frequency location. In the lower right panel,
segments of 6 time units with increments of 2 units were used, yielding
29 windows.
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Figure 4. On the left panel, it can be seen a curve with periods
varying over time and on the right panel its STFT, built from segments
of 80 time units with increments of 24 units, yielding 39 windows on
the x-axis. On the vertical axis of each window 64 cells were colored
with a gray scale according to the magnitude of the Fourier coefficients.
In this figure the dark regions, corresponding to a high magnitude of
the Fourier coefficient, sweep across an interval as they move through
time.

able number of dilations and contractions of a wavelet function called “parent",
stretches and squashes of those functions and translations of all of them. This is
equivalent to having bricks of various sizes and widths that can be placed under
any house and that adding up all the volumes will give exactly the same volume
of the house.

In the next section we will be introduced to multiresolution analysis, the
main feature of wavelet analysis, which will allow us to define a basis of wavelet
functions in L?(R) with which we can represent any function f(z) in L?*(R)
through an infinite countable linear combination of the basis.

2.1. Multiresolution Analysis

Wavelets can be considered as a basis of functions generated by dilations and
translations of a simple function which, in general, is not sinusoidal. They are
connected to the notion of multiresolution analysis (MRA) in which the objects
(signals, functions, data) can be examined using several levels of approach, as if
zooming in and out. In both cases we can obtain relevant information about the
object. As an example, suppose we are looking at a house, the observation can
be made from a large distance from where only the basic shapes and structure
can be distinguished (if it has a garage, the shape of the roof); or one can observe
from a closer distance and various other characteristics of the house will appear
(the door is made of hardwood, for example).

The basis function will be generated from a basic function that is usually
called parent wavelet or scaling function, which in turn allows us to build another
basic function that we will call mother wavelet or wavelet function. The repre-
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sentation of a function f(z) will be done through two summands: the sum of the
dilations and translations of the father wavelet, ¢(z), will give us information
about the general, coarse aspects (a kind of smoothing) of the f(z) and the sum
of the dilations and translations of the mother wavelet, 1(z), will give us infor-
mation about the particular aspects and details (like a zoom) of the function.
Each term in the second summand will add more clarity on the specific features.
In this section some basic concepts such as wavelet father, which provides
smoothing, and wavelet mother, to describe the details, are defined to reach the
multiresolution analysis definition. In the following it will be assumed that the
function to be analyzed is a function of time t.
For ¢ € L?(R), k € Z, = € R, we denote ¢o,(x) = ¢(x — k) the family of
translations of ¢ and we denote

@jk(x) = 2%<p(2jx - k)vjv ke Z,

the family of translations and dilations of ¢ with the indexes k and j respectively.
The functional sub-spaces {V;} ez, V; C L?(R) are defined by:

e for j =0

VO:{geL2 chwx— ),Z|ck|2<+oo}
k

that is, Vj is the subspace spanned by the translations of p(z) by &,

ol — k).

e and for j € Z:
{h ) = g(2z) gGVo}.

Then h(z) € Vj, if h(x) = S cpp(2tz — k) for {ci} such that 3 |ex]? <
k k
400, or, Vj, is the subspace spanned by the functions {©(2'z — k) }rez.

Therefore ¢ generates the sequence of subspaces {V;}. The sequence {V;}
is called multiresolution analysis if

1. {©or} is an ortonormal system in L2(R),

2. the subspaces are nested, that is,

‘/}C‘/}Jrl,jGZ, (7)

3. every function in L*(R) can be obtained as a limit of a sequence of functions
in |J Vj, that is, every function f € L?(R) can be written as a series of
720
elements in |J V.
720

In this case, ¢ is called Wavelet father. Another sequence {W;} en, is
considered such that W; is the orthogonal complement of V; C V; 4, W; =
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Vi1 6V, then U Vy = VoU (Vi © Vo) U (Vo & Vi) -+ U (Vjer © V) -+ Then
320

UVv,=%wmao & (V;z1©V;) is a direct sum of sub-spaces that completes L*(R)

7>0 3=0

leading to

L*R) =Vy & %0 W;,
J:

therefore any function f(z) in L?(R) can be written as a linear combination of
functions in Vy and {W;}. For each j € N, let ¢ be a function such that its
translations and dilations, {1, = 27/2¢(27x—k), k € Z}, are an orthogonal basis
of W;. Then, for instance, the translations {¢g,(x) = ¥ (x —k) }; is an orthogonal
system of Wy, this system is orthogonal to Vj and Vi = V;; & W) is the subspace
spanned by the system {{©om }m, {%ok}r}, where wom(z) = o(z —m) for all m.

As a consequence, each function f(z) can be represented as a convergent
series given by

fl@) = arpor() + > Bist(@), (8)
kez =0 keZ
where
o= [ f@deontoids, G = [ eyl 9)

According to the function f(z) sometimes it is necessary to start with a
subspace Vj, with jo > 0, in that case, the first function in the sum, @gi(x), is
replaced by ¢, x(x) and the index j starts at jo > 0 in the right term of equation

(8).

The representation of f(z) as an expansion of translations and dilations of
functions ¢ and ¥ is called wavelet expansion and v the Wavelet mother.

Each W; in the sequence of sub-spaces {WW;} represents a resolution level of

the multiresolution analysis. There are several levels j of resolution, what gives
rise to its name.
The resolution level means a zoom level that is performed on the function, so
each one will allow you to see details at different scopes. Thus the function is
decomposed into an initial smoothing, given by the parent wavelet in the first
term of the right-hand side of eq. (8) and different levels of details that are added
according to the value of the level j in the second term of the right side. The
greater the value of j, the greater the level of resolution and the finest details
will be visible, which will be represented by the j-th term.

An example of wavelet system is the Haar system. The wavelet father and
wavelet mother are given by

plz) = Loy (@), @) =1y (@) + 1oy (@), (10)

B3| =

respectively, where



138 A.Christen

and the interval (a, b] is the set of real numbers between a and b, including b but
not a. The basis of functions for the Haar wavelet system are:

eoe(r) = {101 (T — k) }rez,

Yip(x) = 21/2 (I(%,l] (2jx - k‘) —I[ ](2356 - k‘)) ,

for wavelet father and mother respectively, where j, &k € Z, j > 0. We can observe
that {©or(z)}rez is an orthonormal basis (ONB, i.e.: a basis of orthogonal and
normalized vectors) in

Vo = {h(z) € L*(R) : h(z)is constant on (k, k + 1],k € Z},
{oin(z) = 29/2p(27x — k) }rez is an ONB in

Vj = {h(z) € L*(R) : h(x) = g(2'2), g(2) € Vo},

V; € Vipq and Vy =V, @ W,_q, where W is spanned by {¢;(x)}rez. Finally,
L*R)y=VooWodo W1 ®--W; ®
By way of illustration,

1. {por(z)} is an ONB of V.

2. Vi = {h(z) € L*(R) : hz) = g(22),9(z) € Vo} = {h(z) € L*(R) :
h{z)is constant on (% —1] ke Z} and it is spanned by the ONB
Lok (@), or(x) = I 1y (@ — k) =[x ) (= k)

MH -

3. The functions @1 (x) = 2/2p(2z — k) for k € Z span V; and can be written
in terms of {wor(z)} and {¢or(x)}, since Vi = Vp & Wy. For instance:

V2

- U (@) =1 @)+

p10(z) = \/51(0,%](56) =5

@) = (eo—tin).

L\JIH

e11(z) = V2Ig (22— 1) = %(%00 + %o0)-

A suitable property of the Haar wavelets is that they are cancelled out of a
limited interval. Unfortunately, Haar wavelets are not continuously differentiable
which limits their applications (see Figure 5). There are wavelet families with
compact support (vanish out of an interval) and wavelet families defined over
the whole line. Among the former wavelet families are Daubechies, Coiflets,
Symmlets. Some examples of the last ones are the Battle-Lemarié and Morlet
wavelets.

Father and mother wavelets can be defined from some of the properties of
their Fourier transforms (see Hérdle et al. (1998)).
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Figure 5.  Some representations of Haar wavelet. On the top panel it
is shown Haar father wavelet for (a) j =0, k=0, (b) j =0, k=1, (¢
j=1,k=1/2. On the bottom panel it is shown Haar mother wavelet
for (d) 7=0,k=0,(e) j=0,k=1,(c)j=1k=1.

2.2. Obtaining a Wavelet Expansion

In this section the conditions about functions ¢ and ¢ that guarantee the exis-
tence of a wavelet system are formulated. That is to say, what characteristics
should have so that g is an orthogonal and normalized system, the V; are
nested, the span of |V} is equal to L*(R), 1/, is an orthogonal and normalized

J
system of W, etc. This section follows closely Hérdle et al. (1998).

Properties on ¢, the Fourier transform of ¢, are sought that guarantee the
validity of the necessary and sufficient conditions for the wavelet expansion:

1. {@ok, k € Z} is an orthonormal system (ONS)
2. V;CVj,5€2

3. U Vjisdensein L?(R) (i.e.: the linear combinations of functions in |J V;
320 320
span all the functional space L(R)).

4. {(xz —k),k € Z} is an ONB in Wj.

In what follows functions ¢, that satisfy that there is a constant M > 0
such that > |o(x — k)| < M for x € R — A, will be considered, where A is a
kEZ
null measurement set.
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The following results that allow characterizing the father wavelet and the
mother wavelet from properties of their Fourier transform can be demonstrated

(see Hardle et al. (1998)).

(a) Set ¢ € L*(R). The system {@ok, k € Z} = {¢(x — k), k € Z} is an ONS if
and only if,

ST 1€ + 2k 2 = 1, (11)

kEZ
almost everywhere (a.e.), where ¢ is the Fourier transform of the function
©.

(b) The sub-spaces {V},j € Z}, spanned by translations and dilations of ¢, are
nested V; C V; 1,7 € Z, if and only if, there exists a 27 - periodic function

mg € L?(0,2m) such that

B(6) = mo (g) s (g) ae. (12)

Moreover, [mg(£)|? + |mo(€ + m)[* =1 a.e.

(c) If o satisfies items (a) and (b) above then |J V; is dense in L%(R).
720

(d) If o is a father wavelet that generates a MRA in L2(R), mg(£) is a solution

of equation (12) then
b(e) = my (g) 5 (g) (13)

is the Fourier transform of a mother wavelet 1, where my(£) = mq (€ + m)e %
and the bar represents the complex conjugate.

In summary, to construct a father wavelet ¢ for a MRA, sufficient conditions
on its Fourier transform ¢ should satisfy the following restrictions:

D lpe +2nk)? =1, ae,

kcZ

e £\ . (€
so=m(5)e(5).
where mg € L?(0,27) is a periodic function of period 27 such that

Imo(&)]? + [mo(€ +m))? =1,
(14)
mo(0) = 1,

where the last restriction in equation (14) is deduced of eq. (12) after adding
the condition |¢(0)] = | [ ¢(t)dt| =1 for the father wavelet.
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Since Vy C Vi, then ¢ € V; and it can be written as a linear combination of
the system {v/2p(2z — k)}, an ONB of the subspace Vi. Therefore, there is a
sequence {hx} such that

o(x) = \/52 o2z — k), hg = \/5/ o(z)p(2z — k)dz, (15)

kcZ

with 3~ |hg]? < oo and the constraints
kez

L. > hghgio = do
%
1 _

where 6y = 0if l # 0 and dy; = 1 if [ = 0. By the same argument the mother

wavelet satisfies
Ua) = V2 Mol — k), (16)
k

where \p = (—=1)* 1A 4.
Taking Fourier transform to both sides of left equation in (15) we obtain
o= % > hee ®*E and by eq. (12) we have that

mo(§) = % Z hye k. (17)
k

If the wavelets considered are compactly supported (i.e.: they vanish outside
a bounded interval), the sums in egs. (15), (16) and (17) have a non-zero number
of terms. These relations allow us to determine the coefficients in eq. (9) of a
function in its wavelet representation in eq. (8) through a linear transformation
given by the product of a matrix by a vector.

Compactly supported wavelets

Some of the wavelet families with compact support are the Daubechies,
Coiflets and Symmlets. We briefly describe each of them.
Ingrid Daubechies, to whom we owe the original construction of Wavelets with
compact support (Daubechies (1988)), proposed to take mg(§) such that

mo (62 = e /6 " sV () da, (18)

where the constant ¢y is chosen to produce mp(0) = 1. For such functions
mo(€) the coefficients {h} are tabulated (see Daubechies (1988) or Hardle et al.
(1998)). Wavelets constructed from the function mg(£) satisfying eq. (18) are
called Daubechies Wavelets and they are denoted D2N or Db2N.
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For N =1, we have D2 where ¢y = % and

1 /™ 1
mo(@)? = 5 [ sim(eye = LA,
2 Je 2
Choosing mg(§) = # we obtain

hence Daubechies father wavelet D2 matches with Haar father wavelet, o(z) =
I{z € (0,1]}.

The supports of Daubechies father wavelet and mother wavelet are included
in the intervals [0,2N — 1] and [-N + 1, N], respectively. Besides, Daubechies
mother wavelet has null m-moment (i.e.: [z (z)dz =0) for m=0,...,N —1.

Beylkin et al. (1991) proposed a new class of wavelets with essentially the
same good properties of the Daubechies wavelets and, in addition, the father
wavelet has some zero moments. If the father wavelet has certain null moments

the wavelet coefficients could be approximated by evaluations of the function
f(t) at discrete points:

—5/2
A5k =2 il f (2_J> +Tjk7
with r;; small enough. This can be a useful property in applications.

This class of wavelets was called Coiflets Wavelets and is denoted C'K. To
build the Coiflets wavelets, Beylkin et al. (1991) consider mg(&) of the form

mte) = (225) " nee,

P& = I}:z: Ch (sin2 <g>>k I (smz <§>>K F(¢),

where

and F'(£) is a trigonometric polynomial chosen such that |[mg(£)|2+|mo(€+7)|? =

1. The supports of Coiflets father wavelet and mother wavelet are included in
the intervals [-2K,4K — 1] and [-4K + 1, 2K], respectively.

According to Daubechies (1992) the only symmetric wavelet with compact
support is the Haar system (father wavelet). The family of Symmlet Wavelets is
made up of wavelets for which mg(€) is chosen to be close to symmetry. They are
denoted by SN, where N is the order of the wavelet. Symmlet mother wavelet
has null m-moment (i.e.: [z™y (z)dz =0) for m = 0,..., N — 1. The support
of the father wavelet and mother wavelet are the intervals given by [0,2N — 1]
and [—N + 1, N], respectively.
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3. Cascade Algorithm

Some recursive formulas are presented that will allow the calculation of the
wavelet coefficients sequentially (see Hardle et al. (1998)). The procedure is
called Cascade algorithm (or pyramidal). It was proposed by Mallat (1989).

This method (Hérdle et al. (1998)) is used only with wavelet bases that van-
ish outside a finite interval and built from the function mg(§) = Zk hye~ ¢

(see eq. (17)) where hy, are coefficients of real values with only a ﬁnlte number
of non-zero values. This assumption is satisfied by the families of Daubechies,
Coiflets and Symmlets wavelets, among others.

Given a function f(t), the coefficients o =< f, ok >, Bix =< f, ¥ >
satisfy for j, k € Z the relationships:

ajp = Zhlf%ag#l,la (19)
%

Bik = Z A2k 1) (20)
3

where A\, = (—=1)**1h;_; and {h;} are the coefficients of mg().

Indeed, by multiresolution analysis,
Bk = %/f WPz — k)dr
e Z/\S/f(x)<p(2(2jx _ k) — s)da
— o Z/\s/f(x)w(?“x — 2k — s)dz
= Z/\saj+1,s+2k = Z Al 2k 41,0
5 !

The relation (19) is obtained in a similar way. The cascade algorithm is
defined by both equations (19) and (20).

Only a finite number of coefficients ;. are non-zero in each level j. There-
fore if the vector of coeflicients, y = {«;,;} is known for a certain level jy, it is
possible to recursively rebuild the coefficients o, 351 for levels j < j1, with the
use of the recursive equations (19) and (20).

If the procedure stops at level jg, the vector of resulting wavelets coefficients
w = ({ajok}, {Bjok}s - {Bj1—1.4})" can be computed by
w =Wy, (21)

where W is a matrix.

It is possible to invert the cascade algorithm to obtain the values of the
coefficients y, starting from w by the recursive scheme:
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Wit = O he o0k + > Ae 2Bk, (22)
k k

allowing j to vary from jg to j; — 1.

3.1. Discrete Wavelet Transform

Given the initial values {a(K, k), k = 0,...,2% — 1} the Discrete Wavelet Trans-
form (DWT) recursively calculates the coefficients a(7, k) and 8(j,k) for 0 <
k<2 —1and 0<j <K —1, in the following manner:

a(j, k) =S halj+ 1,1+ 2k) mod 2711), (23)
I

B k) =3 N a(i+1,(1+2k) mod 27T1). (24)
I

where (I + 2k) mod 277! denotes® the remainder of dividing (I + 2k) by 2771,
Therefore the DWT is just a composition of linear orthogonal transformations
presented by the recursions (23) and (24). These recursions can be extended to
k € Z and these extensions are periodic, in the sense that a(j, k) = a(j, k +
27, B4, k) = B(j, k +27) for all k € Z.

The Discrete Inverse Wavelet Transform is defined in a similar way but with
the data periodically extended. It starts with the vectors:

{Oé(j(), k)7 k= 07 "'72j0 - 1}7 {ﬁ(]()a k)a k= 07 ...,2j0 — 1}

and its periodic extensions are denoted by {a(jo, k), k € Z}, {E(jo, k), ke Z}.
Then the vectors {«a(j,s),s = 0,...,27 — 1} are computed until level j =
K — 1, following the recursive equations:

j+13 Zhs 2ka]7 +Z/\s 2kﬁja )SEZ, (25)
aj+1,8)=a(j+1,s),s=0,..,27"1 1. (26)

4. Continuous Wavelet Transform

The continuous wavelet transform is a wavelet transform where the dilation and
translation parameters, named ¢ and b in this case, vary continuously over R with
a # 0 (Daubechies (1992)). Given the wavelet ¢ € L*(R) such that [ (t)dt =0
and a function f € L%(R), the Continuous Wavelet Transform (CWT), Tf, of
f(t), with a # 0 and b € R is defined by

8The remainder of dividing z by y is usually expressed as z mody.
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Thn =l [t () @7

The expression (27) computes the inner product in L?(R) of the function f

against the family of functions, {¢**}, indexed by the parameters a, b, defined
by

Po4(s) =l 2920 (23)

where a # 0 and b € R. The inner product is defined by < f,g >= [dtf(t)g(t),
where f(t) is the complex conjugate of f(t).

When a changes and b remains fixed, 1%%(s) = |a|*1/21/1(2) covers different
frequency ranges. Changing the parameter b allows moving the location in time
(x-axis or time-axis), every 1*?(s) is located around of s = b.

If ¢y € L? and that satisfies the following condition of admissibility

0<Cy=2n / delel DO < oo, (20)

where 1 is the Fourier transform of (see eq. (1)), then the function f can be
reconstructed from its CWT using the equation:

[ [ da-db “ “
feogt [ IR s e, (30)

where ¢*(s) = |a|*1/21/1(377b), and <, > denotes the inner product in L?. The
constraint (29) is satisfied if ¢ € L*(R) (i.e.: [|f(#)|dt < o) and [4(z)dz =0
since under this assumption QZJ\ is continuous, then to get Cy < oo is sufficient
that ¥(0) = 0, or equivalently, [ Y(z)dz = 0.

As an example consider the Haar mother wavelet i(z) given in equation
(10). For a > 0 we have

0 (z) = \/1|;| <—I[b,b+§](x) T L(h12,010] ($)> ;

and the CWT

1 bt+a b+ 5
(Tf)a,b) = \/W< » f(t)dt—/b f(t)dt>.

For a < 0 the CWT is developed in a similar way. In the context of CW'5,
some of the most frequently used wavelet families are real and complex Mor-
let wavelet, real and complex Mexican hat wavelet, real and complex Shannon
wavelet, among others.

The Morlet Wavelet or Gabor wavelet (Daubechies (1992)), is a continuous

wavelet depending on parameter ¢. Its Fourier transform, ¢, is a displaced
Gaussian, tuned somewhat so that ¥(0) = 0,

P(€) = ni (e—(§—§0)2/2 - 67(§2+§§)/2> ) (31)



146 A.Christen

2

P(t) = 7 (eﬂ'&)t - 6763/2> e 7, (32)

1/2
where & is often chosen as 7 (ﬁ) ~ 5.336 or & = 5 for simplicity. The

Morlet wavelet for £y = 5 is shown in Figure 6. This wavelet can be found in its
complex version or in a real-valued version.

Morlet mother wavelet
-06 -04 -02 00 02 04 06 08
I I I I I I

Figure 6. Morlet mother wavelet for £ = 5 is shown in blue colour.

The Mexica% hat wavelet or the Ricker wavelet is the second derivative of
the Gaussian e *"/2 and is defined by

(x) = jgwl/4(1 — xz)eﬂ“g/2

after normalization to get ||1|]2 = 1 (L?(R)-norm) and v(0) > 0. Its plot is rem-
iniscent of a cross section of a Mexican hat. The complex Mexican hat wavelet is

formulated in terms of its Fourier transform given by QZJ(E) = 2\/%7*1/45267%52 I, 100 ().
The Fourier transform of the Shannon wavelet (Mallat (1998)) is the follow-

ing:
i€
ey — ) e 2 ifg e [—2m —m| U [r, 27
v(e) { 0 otherwise
and the continuous wavelet is ¥(z) = sz(iz(:/lz/)z)) — 511175;;(:/12/)2)). This wavelet

has infinite continuous derivatives with decay as % at infinity due to the discon-
tinuities of 1/(€) at € = £ and £ = +£2r.

4.1. Scalogram

The scalogram, a graph of the absolute value of the CWT, |T f|, as a function of
time, is used for different types of analysis. Color levels (high values of |T' f| are
in red) or gray levels are used (high values of |T'f| are in black, zero in white) and

a~ ! is plotted on the ordered (y-axis). Some applications of the scalogram include
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period detection in time series, change point detection, function discontinuity
detection, signals recovering, among others. In all cases, the wavelet transform
can detect the location in time of the event found.

The CW'Ts of 4 time series examples are shown below. They were done with
the package Wavecomp in R # that uses Morlet wavelet family. In the scalogram,
a range of colors appears related to the p-value obtained from a hypothesis test
that is carried out via simulations:

Hy: There is no joint periodicity.

When Hj is rejected, it indicates a great possibility that the periodicity is
present in the data set. Given a level of significance, for example 0.01 or 0.05,
the null hypothesis will be rejected if the p-value is smaller than the level of
significance chosen. The scalogram shows the CWT values for each time and
period in a range of colors from blue to red and a black contour line where the
maximum values of the CW'T are found for each instant of time. This black line,
like the red regions, is found at the times and periods of highest wavelet power
levels, where Hy is rejected.

The first example is a sinusoidal data set with a period P=50. In Figure
7 you can see, from left to right, the original signal, the scalogram (with the
period on the y-axis) and the reconstruction of the signal from the CWT. In this
example "Time’ and ’Index’ on the x-axis correspond to the step of time of the
curve. In the middle panel, you can see that the CW'T detects the period of 50
of the signal.

In Figure 8 the second example is showed: a signal with a variable period
between P = 20 and P = 100. In this figure, from left to right, the original
signal, the scalogram (with the period on the y-axis and the time step on the
x-axis) and the reconstruction of the signal from the CWT can be seen. In the
center panel of the figure, it is shown how the scalogram detects the variable
period of the signal, its tendency and the reconstruction of the signal on the left
panel is quite accurate. We can compare the performance of the scalogram with
the STFT showed on the right panel of Figure 4.

In Figure 9, a signal with two periods: P = 30 and P = 80, both along
all the range, is shown. In the figure, from left to right, the original signal, the
scalogram (with the period on the y-axis and the time step called 'Index’ on the
x-axis) can be observed. On the right panel, it is easy to see two zones in red
with a black line across indicating the two periods present in the signal.

Figure 10 shows a signal with two periods: P = 30 and P = 80, in separate
intervals of time. On the right panel, it is simple to see two intervals of time
with two different periods for the signal. The CWT can detect the instant of
time when the change of period occurs.

In the four examples presented, some of the potentialities of the CWT can
be observed: it can detect one or more periods present in the curve and indicate
the time interval in which the detected period influences the behavior of the
time series as well as it can detect the points of change where the change between

“https://cran.r-project.org/web /packages/ Wavelet Comp/Wavelet Comp.pdf
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periods occurs. All of these are regarding an evenly sampled time series. Because
of this, for 55 Cyg light curve (from TESS mission) a partition of the data is
made and they are analyzed separately obtaining the scalograms in Figure 12.
Although each partition still has irregularly s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>