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Foreword

The VIII La Plata International School was successfully held in the period 
2019 November 11 - 22 on the campus of the Universidad Nacional de La Plata. 
The school was organized by the research group Modelos de Estrellas Peculiares 
(MEP) of the Facultad de Ciencias Astronómicas y Geofísicas (FCAG).

The subject of this school was Pulsations Along Stellar Evolution. The 
offered lectures covered a wide range of topics such as stellar evolution, theoretical 
concepts of stellar pulsations, observing and data analysis techniques, along with 
practical courses for the analysis of selected pulsating stars. The ultimate goal 
of the Summer School was that the participants deepen their understanding of 
the physics of stellar pulsations and learn relevant techniques to analyze and 
properly interpret observational data of pulsating stars. This was achieved by 
the active participation in a number of courses dealing with theoretical exercises 
and practical computer-based exercises. This volume provides a comprehensive 
summary of the lectures that were presented during the school.

The topics offered by the school attracted 58 participants from 13 different 
countries all over the world. The majority of participants came from Latin- 
America (Argentina, Brazil, Chile, Peru, and Nicaragua), but we also had par­
ticipants from several European countries (Czech Republic, Estonia, Spain, and 
United Kingdom) as well as from Asia (Georgia), Africa (Egypt), Australia, and 
the United States of America. By chance, the genders of the participants were 
extremely well balanced, with 29 male and 29 female astronomers, physicists and 
mathematicians, in divers states of their studies (majority within their Master 
or PhD studies) along with a few post-docs and more advanced researchers.

The organization of the school has received funding from the FCAG of the 
Universidad Nacional de La Plata, and from the European Union’s Framework 
Programme for Research and Innovation Horizon 2020 (2014-2020) under the 
Marie Sklodowska-Curie Grant Agreement No. 823734 (POEMS).

We wish to thank the members of the Scientific Organizing Committee for 
their excellent selection of teachers and preparation of the program. Further­
more, we wish to express our deepest thanks to the members of the Local Or­
ganizing Committee and those students who helped with the organization. And 
finally, we are grateful to all teachers for their fantastic classes and to all partic­
ipants that helped making this school an event to be remembered.

Michaela Kraus
Andrea F. Torres
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A Brief Introduction to Stellar Evolution

Omar G. Benvenuto1, f

1 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional 
de La Plata, and Instituto de Astrofísica de La Plata
(CCT-CONICET-UNLP), La Plata, Argentina
Email: obenvenu@fcaglp.unlp.edu.ar

Abstract. With the aim of providing a reference frame for the study 
of stellar pulsations we describe the process known as stellar evolution. 
Evolution and pulsations are deeply related and the knowledge gained in 
one of them has an immediate impact on the other. First we describe 
the observational basis, presenting the Hertzsprung-Russell Diagram and 
other fundamental concepts. Then we describe the physical context of 
stellar evolution in which, quite fortunately, matter is very close to (but 
not in) thermodynamic equilibrium. This allows for a simplification of 
the problem of paramount importance. We describe the equation of state 
of stellar matter, paying attention on when we should expect the oc­
currence of partial and full ionization (fundamental for pulsations), and 
electron degeneracy. Then, we present the concept of hydrostatic equi­
librium. As a natural consequence we consider barotropic structures, like 
polytropic spheres and cold white dwarfs, discussing the existence of the 
Chandrasekhar’s mass limit. As realistic stars are not cold but at fi­
nite temperature (they radiate energy in space!), in general they are non­
barotropic. So, we need to consider the conservation of energy and also its 
transport by radiation, convection and conduction. As it is well known, 
the engine of stars is nuclear reactions. We present the proton-proton 
and carbon-nitrogen-oxygen cycles of hydrogen burning and also the main 
helium burning reactions. Then, we make some brief comments on the 
methods for solving the full set of non-linear, partial differential equations 
of stellar evolution and also those needed for computing the changes of 
chemical composition. At this point we are in conditions to present stellar 
evolution as a direct consequence of these physical ingredients. We dis­
cuss the main stages of stellar evolution for a variety of objects: pre-main 
sequence, low and intermediate mass, white dwarfs, and finally massive 
stars. In this paper we restricted ourselves to the case of isolated and non­
rotating objects evolving during their long lived stages. In our opinion, 
this provides a general basis for most of the usually considered pulsating
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stars.
Key words: stars: evolution — stars: interiors

'I’Member of the Carrera del Investigador Científico, Comisión de Investigaciones
Científicas de la Provincia de Buenos Aires (CIC PBA), La Plata, Argentina

1. Introduction

In these lectures we shall present the classical problem of stellar evolution with 
emphasis on the properties of stars that determine the variety of pulsations they 
suffer. This is a vast field of research. Because of lack of space here we are not 
in conditions to make an in deep description of each of the addressed topics. 
These have been presented in several textbooks. Especially relevant are those 
of Chandrasekhar (1939); Cox & Giuli (1968); Clayton (1968); Kippenhahn & 
Weigert (1990); Arnett (1996); and Maeder (2009). The reader may be some­
what surprised because the main references of these lectures have been published 
sometime ago. The reason is very simple, the most fundamental processes occur­
ring in stars are well understood. Several facts converged to make it possible. For 
example, the engine of stars (nuclear reactions) was identified almost a century 
ago, and the stellar interiors are extremely close to thermodynamic equilibrium. 
This provides a solid basis to investigate this problem. Of course, this means in 
no way that the study of stars is over. Definitively this is not the case.

We shall present the theory of stellar structure and evolution paying special 
attention to the relevant physical ingredients that determine their lives. In our 
opinion, this is essential in order to understand the oscillation properties of stars 
from a theoretical point of view. These oscillations carry very valuable infor­
mation about the structure of stellar interiors. Thus, structure and evolution 
are intimately related to oscillations and the study of these aspects of stars are 
largely complimentary.

Perhaps the most famous diagram related to stars is the Hertzsprung-Russell 
Diagram (or simply HRD) in which we plot (for example) their luminosities 
versus effective temperatures. There are several versions of the HRD in which 
in place of luminosity astronomers employed absolute magnitude and a colour 
index (or even the spectral type) replaces the effective temperature. If we collect 
intrinsic data quantities from field stars we can construct an HRD where the 
distribution of objects is not uniform. In this case, it has a statistical meaning. 
There are regions of the diagram where we find a large density of objects. This 
is due to the fact that at these regions stars evolve slowly. The so-called “Main 
Sequence” (MS), on which we find most of the objects, is due to the strong energy 
release by core hydrogen burning occurring in these stars. The MS is the longest 
stage of evolution for objects undergoing intense nuclear reactions. The red giant 
branch has less stars and is a shorter stage of evolution, etc.

If we collect data from a stellar cluster, all stars are essentially at the same 
distance, have approximately the same chemical composition and usually it is 
considered that have been born simultaneously. Thus, all stars have the same 
age and because they have a mass distribution they are on an isochrone in the 
HRD. "
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As an example of typical HRDs, in Figure (1) we show them for the open 
cluster NGC 2516 and the globular cluster NGC 1261. These diagrams are of 
colour index (B-V) (that has a direct relation with effective temperature) versus 
the apparent visual magnitude V without the correction for reddening. These 
are not intrinsic data since they have to be converted to absolute magnitudes 
by means of the distance modulus; but, this is the same for all stars belonging 
to a cluster. Consequently, these HRD have the same structure as those with 
intrinsic quantities.

Apart from the contamination due to faint field stars that do not belong 
to these clusters, the MS is clearly visible in the HRD of the open cluster. In 
the case of the globular cluster it is possible to see the lower MS (higher mass 
stars evolved off the MS in the far past), the red giant branch (RGB), horizontal 
branch (HB), and asymptotic giant branch (AGB).

Usually, the width of stellar atmospheres is far smaller than stellar radii; 
and the effective temperature corresponds to a layer in which most photons 
escape from the star. As a first, rough approximation, the spectrum of a star 
may be considered as a Planckian curve with T = Tejj. Since we are interested 
on the intrinsic properties of stars, in the following Sections we shall consider 
the version of the HRD defined by the plane log (£/£©) versus log fTejj/K^ 
where L is the bolometric luminosity, L^ = 3.828 x 1033 erg s^1 is the solar 
value, Tejj is the effective temperature and K denotes Kelvin degrees. These 
quantities are related by L = 4ttR2ctT*jj where R is the radius of the star and 
a is the Stefan-Boltzmann constant. Evidently, log(L/L0) = 2 log (R/R©) + 
diog (TeH/TeH,Q) where Teff,e = 5780 K is the effective temperature of the 
Sun, that has a mass Mq = 1.989 x 1033 g and a radius of R^ = 6.96 x 1010 cm.

Here we shall restrict ourselves to the case of non-rotating, isolated stars. 
We feel it is not possible to present all topics in two lectures. We prefer to 
discuss the most relevant stages related with stellar pulsations. Also, we shall 
not treat the case of neutron stars and its related physics since it is outside the 
scope of this School. Here we shall not try to make a detailed description of the 
state-of-the-art of each addressed topic. We consider it more useful to review 
established results.

A fundamental assumption is that oscillations do not have any secular effect 
on stellar evolution. This means that we do not need to take care of the details of 
stellar pulsations to compute stellar evolution. Otherwise we would have faced 
(in the language of numerical analysis) an extremely stiff problem since there 
occur quite different and relevant timescales. For pulsations, timescales may be 
of the order of days or less, whereas stellar evolution proceeds on millions of 
years.

The remainder of this article is organised as follows. In Section (2) we 
describe the equation of state of matter inside stars. Section (3) is dedicated 
to describe hydrostatic equilibrium, where we also briefly describe the theory of 
polytropic spheres (§ 3.1) and cold White Dwarfs (WDs) (§ 3.2). In Section (4) 
we describe the conservation of energy in the stellar interior. Then, in Section (5) 
we present the problem of the transport of energy in stellar interiors, making a 
description of the main characteristics of radiative (§ 5.1), convective (§ 5.2), and 
conductive (§ 5.3) transport mechanisms. The Section (6) is devoted to describe 
the fundamental characteristics of nuclear reactions in stellar interiors. Then
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Figure 1. The HRD of the open cluster NGC 2516 (Sung et al., 2002b) 
(data available at Sung et al. 2002a) and the globular cluster NGC 1261 
(Kravtsov et al., 2010b) (data available at Kravtsov et al. 2010a). For 
details see text.
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we describe in some detail the Proton-Proton (§ 6.1), Carbon-Nitrogen-Oxygen 
(§ 6.2) and Helium burning (§ 6.3) cycles. In Section (7) we briefly describe 
the full system of differential equations that describe stellar evolution together 
with the method of solution for the equations of structure (§ 7.1) and chemical 
evolution (§ 7.2). Then, in Section (8) we describe stellar evolution. Subsection 
(§ 8.1) is devoted to describe the main characteristics of Pre-MS evolution. (§ 8.2) 
is dedicated to the case of the evolution of our Sun and low mass stars. (§ 8.3) 
is devoted to the case of intermediate mass while in (§ 8.4) we describe the main 
characteristics of WDs evolution. Closing this section, in (§ 8.5) we address the 
case of massive stars. Finally, in Section (9) we give some concluding remarks.

2. The Equation of State

For describing stars one of the most relevant physical ingredients is the behaviour 
of matter. This is described by the so-called “Equation Of State”, or EOS. 
Inside stars, matter can be found on an extremely wide variety of conditions. 
Apart from its chemical composition, the density and temperature vary from 
p = 10 12 g cm^3 and T ~ 103 K in the photosphere of a giant to p = 1011 g cm^3 
and T ~ 1010 K in the core of a pre-supernova near core collapse. So, matter can 
be non, partially, or fully ionized, electrons may be degenerate, and even there 
may appear pairs electron-positron at very high temperatures (T > 5 x 109 K). 
Also, in conditions of low density and high temperature, radiation pressure is 
relevant.

A fundamental approximation, fully justified in stellar interiors is the so- 
called “Local Thermodynamic Equilibrium” or LTE. It is quite obvious that stars 
are not in thermodynamic equilibrium, simply because they irradiate. However,: 
variations of T, p, etc. in stellar interior are not very steep. As a consequence, 
the radiation field is anisotropic but only to 1 part in « 10n (see, e.g., Clayton 
1968). So, the state of matter is extremely close to equilibrium. Thus, LTE 
is valid and so, to describe the EOS we can employ the thermodynamics of 
equilibrium.

Another fundamental fact is that the energy of interaction between particles 
use to be far smaller than their kinetic energy. Thus, we may consider the mate­
rial as composed by non-interacting particles. Interactions, e.g., electrostatic or 
Coulomb, are considered only for constructing very detailed stellar models (see 
below§ 3.2).

Taking into account that particles that compose matter are fermions (their 
spins are hf1!, where h is the Planck constant h over 2tt.), they obey the Fermi- 
Dirac statistics. Then, we can write the EOS of fermionic non-interacting parti­
cles as (Chandrasekhar, 1939)

P = / P Up /
9aS 3h3J0 l + expp(E^-p)V

Egas =^ P0 p2E(p)
V h3 Jo l+exp[3(E(p) - p)] 1

N _ _s- p p2
V U h3 Jo 1 + expp(Elj3 - ppCP"
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Here, 3 = A-fET, Pgas is the pressure due to particles and Egas is their kinetic 
energy, V is the volume, N is the total particle number, n is their number density, 
k the Boltzmann constant, p is the momentum of the particles, E(p^ is the energy 
of the particles of mass m and impulse p given by E(p) = -JpX1 + m2c4 — m-c2^ 
Dp is its velocity, and c is the speed of light. This represents a parametric EOS 
where the parameter is the chemical potential p.

If density is low enough, quantum mechanical effects are negligible and the 
gas behaves as non-degenerate (Maxwell-Boltzmann statistics). Then, we im­
mediately arrive to the famous and simplest EOS: Pgas = ^-, where p is the 
mean molecular weight (this is a misleading name since in most cases there are 
no molecules). For full ionization we have l/p = ^XifZi + 1)/A; where Xi is 
the mass fraction of the i- component of the plasma, Zi is its electric charge and 
A,, is its atomic weight. In this case, the mean kinetic energy of each particle 
is 3kT/2 and the contribution to the specific heat per particle is 3k/2, i.e., a 
constant.

Frequently, the abundances of hydrogen and helium are denoted by X and 
Y respectively, while Z denotes the heavier elements fraction; they verify X + 
Y + Z = 1 ' ' '

If temperature is not so high to provide full ionization, in order to consider 
the EOS properly we have to solve for the ionic mixture. Because of the validity 
of LTE we can do it by employing thermodynamic equilibrium that leads to the 
so-called Saha’s law. For the case of the ionization of hydrogen it reads (we 
ignore corrections due to internal partition functions)

nH+ne f 2TvmekT\3/2 Í Xh\
--------  = ----G---- exp - — (4)

where n¿ are the particle number densities, xh = 13.59 eV is the ionization 
potential, and me is the electron mass. While here we present only the expression 
for hydrogen, we need to consider all the elements present in the mixture (see, 
e.g., Baker & Kippenhahn 1961). It leads to a non-trivial system of equations. 
Considering ionizations in detail is of central relevance for stellar pulsations.

The effect of ionizations on the gas pressure is rather obvious, since it affects 
the amount of free particles. Ionization is a way of storing heat that largely affects 
the specific heats. For example, for a pure hydrogen plasma, when the fraction 
of ionized atoms is of 50%, the specific heat at constant volume Co is « 20 times 
the Gy without considering ionizations (Clayton, 1968).

If the gas has a much higher density, due to its very low mass compared 
to that of nucleons (« 1830 times lower), electrons depart from the classical 
behaviour. Electrons provide a strong pressure Pe due to the Pauli’s exclusion 
principle (there can be only one fermion per energy level). If thermal effects are 
negligible (kT <C /z) we may set T = 0. In this case, the distribution of occupied 
levels goes up to the Fermi impulse pp which is related to the chemical potential 
by p = \jp2(? + m-2c4 = mec2V$2 + 1 (where x = pf/mec). In this case, the 

particle number density isnoc x3 whereas, if density is not too high (see below), 
electron will behave as non-relativistic and then Pe ec x5. On the contrary, if 
density is higher and electrons are very relativistic we have Pe ec x4. In this case
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the integrals in Equations (l)-(3) extend on the interval of impulses [0,py], the 
denominator is 1 and the EOS is (Chandrasekhar, 1939)

Pe = A[t(2t2 — SjV^2 + 1 — 3 In (V^2 + 1 — t)] (5) 

and

p/pe = Bx3, (6) 

where A = (8tt/3)mec2(mec//i)3, B = 8tt(mec/h^3 and pe is the mean molecular 
weight per electron. For full ionization we have l//ze = ^XíZíJA¿. Another 
very important characteristic of degenerate electron gas is that it is not efficient 
for storing heat. It can be shown that Cu oc T (Chandrasekhar, 1939) which is 
characteristic of fermionic excitations.

Notice that here we have assumed full ionization even at T = 0. This is 
due to the so-called ionization by pressure. The reason for this to occur is that 
particles are so close each other that the wave function corresponding to bound 
states has no room to accommodate. Consequently, bound states cannot be 
occupied.

Another very important source of pressure is photons. Photons are massless 
Bosons (they have spin /i) and follow the so-called Bose-Einstein statistics1. As 
the number of photons is not defined, the chemical potential of photons is zero. 
This leads to the Planck function B„

1An even number of fermions may be together in a bound state, e.g., a 4He nucleus. These 
compound objects have a spin value that is an integer multiple of ft; so, they are bosons too. 
However, these particles are so massive that are non-degenerate in normal (not neutron) stars 
and the quantum effects are negligible for their description.

R - 1 171 
~ ¿2 ehu/kT_^ ’

where v is the frequency of radiation. Photons provide the radiation pressure 
that is given by the very simple expression

Prod = ^aT\ (8) 

where a is the constant of radiation.
In Figure (2) we present the typical thermodynamic conditions for stellar 

interiors. We describe the regions in which the different sources of pressure dom­
inate over the others. For example, the division between the regions dominated 
by gas and radiation pressure is given by Prad = Pgas, etc. Also we included 
the structure of several stellar interiors. For the star of 20 Me, radiation pres­
sure is important, whereas this is not the case for a 1 Mq object. Also, we 
show the structure of a 0.8 Mq carbon-oxygen WD. While its outer layers are 
non-degenerate, the deep interior is at very high densities reaching relativistic 
conditions.

As we shall see below, the equations of stellar evolution include a temporal 
derivative of the entropy S", so, it is useful to write down the differential of S. If 
we consider P and T as independent variables, this differential is
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Figure 2. The conditions at which dominates each of the four basic 
sources of pressure. Black solid lines divide each region. As examples 
of stellar structures we included several relevant cases. In blue lines 
we plot the structure of a 20 M^ star on the Zero Age MS (solid) and 
the conditions at helium core exhaustion (dashed). The structure of a 
1 Me is denoted with red lines for the case of the present Sun (solid) and 
when reached red giant conditions (dashed) previous to the helium flash 
(see below § 8.2). Solid green line depicts the structure of a 5 Me star 
well after helium core exhaustion. Finally, in solid cyan line we show 
the structure of a cool 0.8 M^ carbon-oxygen WD. All these states of 
evolution are described below in Section (8).
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dS = CPdT - -dP. 
P

(9)

Here Cp is the specific heat at constant pressure and 5 is the thermodynamic 
derivative 5 = — (81n p/81nT^ p.

The problem of the stellar EOS is treated in all textbooks cited above and 
also in several papers, the interested reader may consult for example those of 
Kippenhahn et al. (1967); Cox & Giuli (1968); and Timmes & Arnett (1999).

3. Hydrostatic Equilibrium

Stellar evolution proceeds so slowly on time that we can consider it as a contin­
uous sequence of structures in hydrostatic equilibrium. For non-rotating, New­
tonian objects, the equations that describe this condition are2

2These equations are not applicable to neutron stars. In this case we need to consider the
Tolman-Oppenheimer-Volkoff equations that correspond the case of gravitation described by 
General Relativity (see Shapiro & Teukolsky 1983).

dP _ GM.r 
dr r2

and

dMr . 9—----  = 4tT7'2/9.
dr

Here P is the total pressure, r is the radius, G is the Gravitational constant, 
Mr is the mass enclosed inside a sphere of radius r, and p is the density. The 
boundary conditions are MT = 0 at r = 0 and the surface is defined by zero gas 
pressure Pgas = 0; there r = R.

Equations (10) and (11) can be solved if the EOS of material behaves as 
barotropic, i.e., P = P(pY This is the topic of the next two subsections.

3.1. Polytropic Spheres
Let us consider a particular barotropic form for the EOS: P = Kp1+1/n where 
n is the polytropic index and K is a constant. If we define p = pc9n where 
pc is the central density and 9 is the polytropic function; and r = a£, where 
a2 = ^"¿^ pr" 1 we find the Lane-Emden equation

1 cl / 2 d9 \ 
^d^ V ^7 (12)

The corresponding boundary conditions are 9^ = 0) = 1, d9/d£,\^=o = 0 and the 
surface is defined by 9^ = £s) = 0; thus, the radius R is R = 0^5. The mass of 
the whole sphere is given by M = iira3 pc(—£2d9/d£,')^=^s. The solution of the 
Lane-Emden equation and the density profile is shown in Figure (3) for some 
values of the polytropic index. Analytic solutions for Equation (12) are known 
for n = 0,1, and 5.
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i

Figure 3. The polytropic function (left panel) and the density profile 
(right panel) for few values of the polytropic index.
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Polytropes with n = 3/2 are a good approximation for fully convective stars 
at the Hayashi Track during the Pre-MS evolution (§ 8.1) and also for low mass 
WDs (§ 3.2). The case of n = 3 nicely represents the case of very massive WDs 
(§ 3.2) and sometimes is employed as a rough approximation to the structure of 
MS stars (Arnett, 1996).

3.2. Cold White Dwarf Stars
The simplest way to study the structure of WDs is to consider them to be chemi­
cally homogeneous at zero temperature with the EOS described by Equation (5). 
This EOS is not polytropic but equations may be handled in a similar way to 
find the equation that describes the structure of WDs. Indeed, as quoted above, 
its polytropic index is 3/2 at low densities and 3 at high densities (relativistic 
degeneracy). This was done by Chandrasekhar (1939) who found one of the 
most relevant results of stellar astrophysics: a degenerate star can be in hy­
drostatic equilibrium only if its mass is below a value currently known as the 
Chandrasekhar’s Mass Limit

5 75
Meh =

Me "
(13)

Because of evolutionary reasons, WDs with masses M > 10_2Mo can have a 
little amount of hydrogen located in the outermost layers. This has a minor 
effect on the total mass of the WD. If we neglect it, for objects composed by 
matter that has symmetric nuclei (these are nuclei with the same number of
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protons and neutrons, e.g., ^He, 12C, 16O, etc.) p-e = 2 and Mq^ = lAM©3. 
Observations to measure the masses and radii of WDs are difficult, in any case 
they are in nice agreement with the predictions of this theory. S. Chandrasekhar 
awarded the Nobel Prize of Physics in 1983 for this work.

3However, for an iron ^Fe composition, ^e = 2.153 and Mph = 1.24AT,

4This is especially true for Jupiter and Saturn because their structures are mostly gaseous.

Remarkably, the WD with M = Mq^ has infinite density and zero radius! 
Evidently, this indicates that some basic hypotheses have to be improved, at 
least for very massive WDs. This was done by Hamada & Salpeter (1961) who 
applied the EOS derived by Salpeter (1961). They considered Coulomb and 
other interactions for the cold degenerate plasma. These corrections represent 
a negative correction to the pressure of free electrons. So, for a given pressure 
the gas is denser compared with the value corresponding to the free particle 
treatment given by Equation (5).

At very high densities (p > 109gcm-3) the electron chemical potential 
becomes so high that it is energetically favourable their capture by nuclei. This 
phenomenon is usually known as “electron capture”. Thus, at such high densities 
an increase in density makes the pressure to grow slower (the EOS softens). This 
induces the occurrence of a gravitational instability at a mass similar to the value 
found by Chandrasekhar, but at finite stellar radius.

An important result is related to very low mass objects (M < 10~2ALq): 
the corrections to the free particle EOS become proportionally larger the lower 
the object mass is. Then, it is found that there is a maximum radius for such 
low mass objects. This result is absent in the treatment by Chandrasekhar, who 
found that the lower the mass the larger the radius. Because of the complexity 
of its EOS (see, e.g., Saumon et al. 1995), very low mass WDs are not simple 
objects. They are deeply related to the Solar System’s gaseous giant planets4.

The mass radius relation for cold WDs is presented in Figure (4) (see also 
Hamada & Salpeter 1961).

Among other phenomena, the theory of WDs has a direct impact for example 
in the theory of Type la supernova explosions. Further details on the physics of 
cold WDs can be found in Shapiro & Teukolsky (1983).

Let us remark that, apart from the great success of this theory, this is not 
enough for considering the non-radial pulsation of WDs. For such purpose the 
zero temperature hypothesis must be relaxed and WDs should be constructed as 
consequence of stellar evolution as it will be described below in § (8.4).

4. Conservation of Energy in Stellar Interiors

In order to study non-barotropic structures we have to consider the conservation 
and transport of energy in stellar interiors. The equation of energy conservation 
can be written as

—— = 47rr2p E„ - ev - T— . (14) 
or \ at)
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Figure 4. Mass radius relation for cold WDs. Solid lines represent 
sequences that consider the Salpeter (1961) EOS and are similar to 
those presented by Hamada & Salpeter (1961). Dashed lines denote 
the Chandrasekhar WDs. We considered models of carbon and iron. 
Green dots represent the data given in Dufour et al. (2017). Notice 
that massive WDs ^M > 0.6-Mg) are in excellent agreement with the 
theoretical results. Lower mass objects have larger radii due to thermal 
effects (See below, Figure (12)).
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Here Lr is the luminosity that emerges from a spherical surface of radius r, En 
(e^) is the energy release (loss) due to nuclear reactions (neutrino emission) per 
gram and second, and S is the entropy per mass unit. We should remark that 
the derivative of the entropy is computed for a fixed mass element (Lagrangian) 
since it is the element that exchanges energy. e„ and ev are functions strongly 
dependent on the temperature, density and the chemical composition. So, it is 
unavoidable to compute the chemical evolution of the stellar interior to compute 
stellar evolution.

The boundary condition is Lr = 0 at the stellar centre. Since there occurs a 
partial derivative with respect to time, this indicates that the star at time t +At 
is connected with its structure at t.

There may occur (for example in the case of cold WDs) that En = 0, ev = 0 
and LT > 0. So, the star is releasing entropy. This does not violate the second 
principle of thermodynamics, since radiation carries away entropy and in such 
case the isolated system in which total entropy cannot diminish is the star and 
the surrounding space.

5. Transport of Energy in Stellar Interiors

Because of the variety of thermodynamic conditions, it is not surprising that 
all possible processes of energy transport play a role in stellar interiors. These 
processes are radiation, convection and conduction.

Radiation is the dominant process for transporting energy when material 
is transparent enough. Material may be considered at rest and the transport is 
driven by electromagnetic radiation. When matter is not so transparent, energy 
is transported by convection. Convection can be roughly described as two cur­
rents of matter moving, one outwards and the other inwards without net mass 
flux. If the outward flux carries more energy than the inward one it renders a 
net energy flux. Convection is one of the most uncertain ingredients of stellar 
interiors. This is especially important for the case of the outer layers of cold 
stars. Indeed, the uncertainties in the treatment of convection (usually the Mix­
ing Length Theory MLT) prevent us to get a fully predictive theory in the red 
part of the HRD. Finally, conduction is important in conditions of very high 
densities.

Most of the stars have radiative and convective layers. For example, our Sun 
has a convective envelope and radiative interior, massive stars on the upper MS 
have convective cores and radiative envelopes, etc. Conduction is important in 
conditions of very high densities attained in the core of red giant stars and WDs. 
Indeed, conduction is usually considered so efficient that it is able to transport 
energy with a very small temperature gradient. In other words, conduction 
usually lead to structures nearly isothermal.

There is another physical process capable of transporting energy. This is 
the emission of neutrinos. In the context of normal stars, this is fundamentally 
different from the other three processes quoted above. Neutrinos have a so small 
interaction cross section with matter that their mean free path is by far larger 
than star sizes. So, neutrino emission acts as a local cooling process. The only 
contexts in which neutrinos have to be transported are core collapse supernovae 
(Janka et al., 2016) and the birth of neutron stars (Burrows & Lattimer, 1986).
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5.1. Radiative Transport and the Opacity
The opacity is due to interactions that remove photons from a given direction 
of propagation. There are of two types of opacity sources qualitatively different. 
One can be defined as true absorption in which a photon is destroyed and its 
energy is employed to excite some degree of freedom of the plasma. The other 
process does not destroy the radiation but changes the direction of propagation; 
this is the scattering.

True absorption is due to

• Bound-Bound transitions: An electron jumps from a discrete level to an­
other at higher energy. It leads to discrete absorption opacity.

• Bound-Free transitions: An electron jumps from a discrete level to the 
continuum. It leads to continuous opacity with a sharp cut off edge at 
wavelength corresponding to photons with the ionization energy.

• Free-Free transition: An electron jumps from two states of the continuum 
in the Coulomb field of a neighbouring ion. It also leads to continuum 
opacity.

At conditions of full ionization of the material, the only possible process is scat­
tering. This due to the well known fact that free particles cannot absorb photons. 
It is easy to verify that the absorption of a photon by a free particle cannot fulfil 
energy and impulse conservation simultaneously.

As stated above, the stellar interior is in LTE. Thus, the radiation field is 
almost a black body spectrum given by Equation (7). It can be shown (see, 
e.g. Clayton 1968) that the opacity relevant for stellar interiors is the Rosseland 
mean opacity, defined as

1
k-r

1 clBv 
+ KVS dT

(15)

where k* a is the true absorption coefficient K,Via corrected by induced emission 
K*a = Rv.a^ — exp (—hv / kT^, and k^s is the scattering coefficient.

Considering the number of species, the different degrees of ionization and 
the population of the energy levels of each of them it is easy to conclude that the 
amount of possible transitions is quite large. Also, in order to apply the theory 
of interaction of matter with radiation it is necessary to know the wave function 
of the present ions and the perturbations due to mean field effects that were 
not essential for the treatment of the EOS here are unavoidable. This makes 
radiative opacity calculations among the most difficult in astrophysics. Notice 
that in most cases the results are hardly testable in laboratory. This is not a 
minor difficulty.

The first opacity tables were computed assuming that all wave functions 
correspond to hydrogen like ions (ions with charge Z and one bound electron) 
which represents a poor approximation to reality. Since computational facilities 
were powerful enough, opacities were largely improved. Now, the OPAL project 
Iglesias & Rogers (1996); Rogers & Iglesias (1992) published tables of Rosseland
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opacities5 that cover a large portion of the conditions present in stellar interiors 
and virtually all chemical mixtures expected to occur in stars. For a given 
chemical composition these tables are presented as functions of the logarithms 
of T and R, with the latter defined as6 R = p/Tf (where 7g is the temperature 
in millions of Kelvins). These tables cover temperatures from 6 x lO3^ < T < 
5 x 108A and 1(P < R < 101.

5These are available at https://opalopacity.llnl.gov/existing.html. Also, they provide 
interpolation routines tailored to handle these tables.

6This quantity has been chosen because of numerical convenience since in stellar interiors R
vary on a much narrower interval than p, that was employed in older tabulations.

OPAL calculations neglect the presence of molecules. For temperatures 
below few thousands of Kelvins molecules have to be included. Classical calcula­
tions of opacities considering the molecular contributions have been presented by 
Alexander & Ferguson (1994) who tabulated opacities for a variety of chemical 
compositions, temperatures in the interval 2.7 < log(T/K) < 4.5 and the same 
values of R as in OPAL tables.

A typical result is presented in Figure (5) where we show the values of opac­
ity for a Solar mixture (A" = 0.70, Y = 0.28, Z = 0.02) as function of the 
temperature for different values of R. For low temperatures, kr has a deep min­
imum and tends to increase with T up to values at which molecules are broken. 
The maximum opacity values correspond to conditions of partial ionization of 
the species that dominate the composition (in this case hydrogen and helium). 
At higher T, hr decreases being dominated by bound-free and free-free transi­
tions. For even higher T, and especially for low R values, kr shows a remarkable 
minimum. It corresponds to fully ionized matter that has a Thompson scattering 
opacity which corresponds to a value of kr = 0.19(1 + A") cm2 g-1.

In spite of the great efforts devoted to improve stellar opacities, still there 
are conditions for which they are not accurately known. This is so especially 
since for low mass objects interactions are strong and the perturbative expansion 
employed become poor approximations. This is the case found for the envelope 
of WDs and also very low mass stars and substellar objects.

It cannot overstated the relevance of the opacity. It appears in the equa­
tions of stellar evolution and oscillations. However, there is a quite remarkable 
difference: while opacity derivatives play no role in stellar evolution, they are 
essential for non-adiabatic pulsation calculations. So, it is not only necessary to 
know opacities accurately but also their derivatives (see carefully Figure (5)).

If radiative transport prevails, the gradient of temperature is given by

_ /dlnTA _ 3 KRPLr
rad - \dlnp) rad - IGiracG MrT4 1 !

5.2. Convective Transport

In convective zones we need to compute the temperature gradient Ycon.u. The 
treatment usually employed is that given by the Mixing Lenght Theory (MLT). 
This theory assumes (see, e.g., Cox & Giuli 1968; Kippenhahn & Weigert 1990) 
that bubbles carry heat that is exchanged with the surroundings after travelling

https://opalopacity.llnl.gov/existing.html
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Figure 5. The Rosseland mean opacity for a Solar mixture. At low 
temperatures (Log(T/K) < 3.7) opacities include the contributions due 
to molecules whereas for higher temperatures they are due to atoms, 
ions, and electrons. Different lines are labelled with the corresponding 
value of Log^RY For further details see text.
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a distance t. Remarkably, this critical parameter is not provided by the theory. 
This is a serious shortcoming since the temperature gradient VCO7W is strongly 
dependent on this parameter. Frequently, I is adjusted to fit the radius of the Sun 
and then is applied to any star. Certainly, this procedure is not free of objections. 
There are in the literature a large number of proposals of how to improve the 
treatment of energy transport by convection. However, there is no consensus on 
what is the best way to do it. Clearly, this problem is still open. Despite these 
limitations, MLT is used in stellar modelling because of its simplicity.

The temperature gradient Vcon.u can be expressed as a function of two di­
mensionless parameters: U and W defined as

and

U =
BacT3

Cpp2KRe2

w — Vrad — Vad

(17)

(18)
where g is the gravitational acceleration, and Hp is the pressure scale height. 
U is proportional to the ratio of the time for free falling a distance I and the 
thermal adjustment timescale. Usually, I is written as £ = amitHp where amu 
is a free parameter and Hp is given by

dr P r2P
P dlogP gp GMrp (19)

Notice that Hp —> oo at the stellar centre, while near surface it is Hp C R. 
With these quantities we have to solve the cubic equation

^-Uf + ^U2-U2-W) =0 (20)

and then, we compute the temperature gradient with

Vcmv = Vad + e-U2. (21)

Due to the rough description of convection made by the MLT, Vcon.u is a 
rather uncertain quantity. In convective cores this uncertainty has no impact on 
the structure of the star, since Vconu differs from Va¿ typically only in « 10 A 
In other words, at these conditions convection is almost adiabatic since the heat 
exchanged is far smaller than the heat content of the material. However, this is 
not the case for convective envelopes. In outer layers, convection is appreciably 
non-adiabatic (the difference V cony — V ad is non-negligible) and the uncertainties 
in Vcon.u make the outer structure of these stars to be poorly known. This fact 
is sometimes forgotten but it is very relevant for a correct interpretation of the 
observational data based on theoretical models that employ this theory.

5.3. Conductive Transport
As already quoted, conduction is important at high densities. In these condi­
tions electrons are largely inhibited to undergo Coulomb scattering because most 
quantum states are occupied (and then, they are not available as final state for 
scattering because of the Pauli’s exclusion principle). Thus, electrons use to have
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a very large mean free path and carry information of temperature differences over 
long distances. This process has been studied in many papers, e.g., Itoh et al. 
(1983); Itoh et al. (1984). ’ '

Conduction is usually handled to define a conductive opacity equivalent to 
the Rosseland mean opacity. Then, radiative and conductive opacities are added 
as parallel resistances in electric circuits:

1 1 1— —----- 1--------
K Kr ^cond

(22)

Evidently, the dominant opacity is the lowest of them.
As stated above, there are thermodynamic conditions at which kr is not 

accurately known and we cannot apply Equation (22). Fortunately, in most 
situations this does not represent a serious shortcoming since in these cases we 
have Kconcl « kr and then, k = K,mnd

6. Nuclear Reactions

At present, it is clear that the main source of energy that allow stars to shine on 
very long times is nuclear reactions.

Nuclei are objects formed by protons and neutrons that remain bound by 
strong interactions. Usually, the numbers of protons and neutrons are denoted by 
Z and N respectively while the total baryon number of a nucleus is A = N + Z. 
The radius of nuclei is approximately 1.2 x 10—"L3^1/3 cm = 1.2A1/3 Fm. Let us 
define the binding energy B(A, Z) as B(A, Z)/c2 = M(A, Z) — Zmp — (A—Z)mn. 
Here M(A, Z) is the mass of the nucleus (A, Z) and mp (mn) is the mass of the 
proton (neutron). A nucleus can exist if B(A, Z) < 0, i.e., to disintegrate it is 
necessary to add an amount of energy greater or equal to |B(A, Z) |. Notice that 
the condition B(A, Z) < 0 does not imply the stability of nucleus (A, Z); it may 
be stable or decay by several channels (e.g., by the emission of a photon, proton, 
neutron, electron, 4 He, etc.).

It is well known that the most tightly bound nuclei are those with Z values 
close to iron: vanadium, manganese, chromium, cobalt, nickel, copper, etc. If a 
fusion reaction occurs between light nuclei and produces a nucleus lighter than 
iron peak isotopes, in general it will be exothermic. This is the way stars release 
energy: they continuously undergo reactions that produce more tightly bound 
nuclei. As energy conserves, a part of it may be stored in its interior and the 
rest is released as luminosity.

As in any combustion process, nuclear reactions modify the composition 
of the stellar interior and slowly change the mean molecular weight. So, the 
stellar structure has to accommodate to the continuously changing distribution 
of elements, modifying its characteristics (radius, luminosity, etc.). This, and 
the energy released as luminosity are the very reasons why stars evolve.

At the conditions present in stellar interiors, protons, neutrons and nuclei 
are non-degenerate particles that obey the Maxwell-Boltzmann distribution of 
velocities

/ ^2
4>(vyi3v = 4tt -——

3/2
u2 exp

2 \

2kT / dv (23)
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where p, is the reduced mass of the reacting particles7, and v is their relative 
velocity. This fact is of enormous relevance, since the particles that undergo the 
reactions are in the high energy tail of the distribution.

Nuclear reactions in astrophysics occur at very low energy. Let us imagine 
that two positively charged nuclei approach each other. Since typical energies 
are low (^KeVs) and the potential barriers are much higher («MeVs), classical 
physics predicts the occurrence of a turning point of the trajectories that pre­
vents nuclei to get close enough to feel their structures, inhibiting any reaction. 
However, the correct treatment is given by quantum mechanics which allows the 
occurrence of the tunnel effect that provides a way for nuclei to go across the 
potential barrier and allows the reaction to occur.

The fundamental quantity to go further is the nuclear reaction cross section 
cr, usually is defined as

, x SIE") / 27rZ0Zie2\

The exponential factor is the so-called Gamow Factor that describes the tun­
nelling across the repulsive Coulomb potential, E = /zv2/2 is the energy at the 
reference frame in which the centre of mass is at rest, Zq and Zi are the charges 
of the reacting nuclei, and e is the electric charge unit. In the case in which 
the energy of the projectile does not coincide with any energy level of the nuclei 
S(E) is a smooth function and the reaction proceed as non-resonant.

In the case in which particles reach the energy level of the compound nucleus, 
er is described by the Breit-Wigner cross section

_ (2£ +1) 2 ra(r - ra)
4tt (E-Ej2+T2'

Here £ is the quantum number of angular momentum corresponding to the res­
onance, Er is the energy of the resonance, T is the width of the energy level, Ta 
is the width due to the resonance channel, and A is the De Broglie wavelength 
of the particle.

The factor S(E) in Equation (24) cannot be measured in laboratory directly 
for the range of energies at which non-resonant reactions occur in stars. At 
these energies, reaction cross sections use to be too low for such purpose. So, 
it is a common practice to measure the reactions at energies much higher at 
which resonances occur and reactions are by far more frequent. Then, employing 
expressions like Equation (25) the cross section is extrapolated to stellar energies. 
This procedure leads to uncertainties in the knowledge of the factor S(E).

In order to compute the energy release due to nuclear reactions as well as 
the change of chemical abundances we have to compute their reaction rates. This 
is given by an integral over the distribution of velocities of the particles

cr(u) -v <f)(v)d3v (26)Ao Ah r 
1 + ^o,i Jo

'Do not confound with the mean molecular weight defined in the treatment of the equation of 
state.
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where Nq and AA are the particle number densities of the reacting nuclei. The 
Kroenecker’s delta takes into account that if particles are identical, the number 
of different pairs has to be corrected by a factor of one half.

In the case of non-resonant reactions the rate is

lEr
2.62 x 1029 2A0Alc 2 , x

------ ;—„ P m—m>c exp — r(1 + ¿o,i)AZqZi AqAi '
3 —1 cm s (27)

where Aq and Ai are the masses of the reacting nuclei, A"o and AA are their 
abundances by mass, and A the reduced mass (1/A = 1/Aq + 1/Ai). So is the 
value of S^E^ at the energy of maximum efficiency of the reactions (Clayton, 
1968) given in units of KeV barn (1 barn= 10 24 cm2), and t is

t = 42.48 po%2M
V r6 v

1/3
(28)

For the case of resonant reactions the expression is

2.94 x 1036 2 A0Ai 1 FiiF-Fi)
exp

Er 
11.61—^

T6
cm 3s 1, (29)

where Er is the energy of the resonance in KeV units and Fi is the energy width 
of the resonance employed by the reaction.

The energy release due to nuclear reactions is given by

(30)

where Qi is the energy released and the sum goes over all the reactions.

6.1. The Proton-Proton Cycle
The Proton-Proton cycle is the following sequence of reactions

'F+'F -
^DvH -

3 He + 3 He -
3He + 4He -

1 Be E e -
7LiE1H -

7Be + 1H -
8B -

8Be -

4- L-c -im (31)
4- 3He. (32)
4- 4He + 21H, (33)
4- 7Be, (34)
-> 1 Li E vei (35)
4- 24Hc. (36)
-> 8B, (37)
-> 8Be + e+ + i/e, (38)
4- 24He. (39)

The key Reaction (31) of the Proton-Proton cycle was identified by Hans 
Bethe. Two protons encounter each other; then, one becomes a neutron and
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get bounded as a deuteron. This is a weak interaction that has an extremely 
low cross section. The deuteron is the simplest composed nucleus with a low 
binding energy. Considering it as bounded in a spherical potential well, the wave 
function occupies an appreciable volume in space, even outside the well. This 
has the important consequence that Reaction (32) has a cross section larger than 
Reaction (31) by a factor of « 1018. Then, in the deep solar interior, the ratio 
of the abundances of deuterium to hydrogen is ^DjH^p. « It) W However, 
remarkably, on Earth this ratio is much larger: (D/H} ~ 10 4. This fact is 
easily accounted for if we assume that the deuterium present on Earth is due 
to Big Bang nucleosynthesis and that the matter forming the Earth has never 
been in the solar interior. Evidently, it imposes a fundamental condition to any 
theory of the formation of our Solar System.

The deuteron captures another proton and produces a 3 He (Reaction 32). 
Then, two 3 He nuclei fuse to give a 4He and two 4H (Reaction (33)). This is the 
PP I subcycle. When there is 4He, it is possible the occurrence of Reaction (34), 
and the cycle goes through subcycles PP II (Reactions (31), (32), (34), (35), and 
(36)) or PP III (Reactions (31), (32), (34), (37), (38), and (39))

Because in this cycle the reactions involve the lightest nuclei, the Coulomb 
barriers are the lowest possible. So, the PP-cycle is the dominating energy source 
at low temperatures (see below Figure (6)). Of course, there are reactions that 
can occur at lower temperatures. For example, Reaction (32) is the only one 
that occurs in substellar objects with masses of > lCr2MQ. For the case of Solar 
composition objects, it dominates for stars with M < 1.2MO.

The rate of energy release for the PP-cyle in stationary conditions8 is given 
by

8This corresponds to the case in which deuterium and the isotopes of lithium, beryllium and 
boron have low abundances that remain almost constant on the timescale of hydrogen burning.

/ 33.80\ ,
------er9 9 s

\ J6 7
(40)

The PP-cycle is self starting. It needs no other isotope but hydrogen present 
for it to occur (of course, if there is no 4He, the only possible subcycle is the 
PP I). This is in sharp contrast with the next cycle to be presented, the Carbon- 
Nitrogen-Oxygen cycle

6.2. The Carbon-Nitrogen-Oxygen Cycle

The other way to burn hydrogen in stellar interiors is the Carbon-Nitrogen­
Oxygen (or CNO) cycle:
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l2C+'F -à 13 N, (41)
131V -à ^C + e+Ti/e, (42)

^C^H -à 141V, (43)
^IVT1# -à 15o, (44)

15o -à 15 N + e+ + !/e, (45)
^IVT1# -à 12C + 4Fe, (46)
^IVT1# -à 16O, (47)
^O-^H -à 17f, (48)

17f --> 17O + e+ + vei (49)
XH'H -à 14A7 + 4He. (50)

The CNO cycle does need for the presence of 12C or 141V. This is very 
different from the PP-cycle. In this cycle protons are captured on heavier nuclei 
that produce /3-unstable isotopes that decay on a timescales of few minutes. 
Protons are converted to neutrons in such decays (Reactions (42), (45), and 
(49)). This cycle is usually divided in two subcycles, the CN (Reactions (41 )­
(46)) and ON (Reactions (44), (45), and (47)-(50)). In the CN (ON) subcycle the 
12C (147V) acts as a catalyst because it is destroyed and then produced during 
the subcycle.

Compared to the PP-cycle, since proton captures occur on heavier nuclei, 
the CNO cycle is possible for higher temperatures. The mean energy release in 
stationary conditions is given by

/ 152.28
Ecno = 8.67 x 10 ---- exp I  

T6 T6
ergg 1 s 1 (51)

where Xcn is the abundance of 12C and 141V.

6.3. The Helium Burning

The main helium burning reactions are

4 He + 4 He e
8Be + 4He e

12^y* _

12C + 4Fe -
16O + 4He -

20AT + 4Be -

-> 8Be, (52)
-^ 12C*, (53)
-> 12C, (54)
-> 16O, (55)
-^ 20Ne, (56)
-> 24Mg. (57)

Considering that the species present at the end of hydrogen burning are 
helium and traces of hydrogen, a fundamental difficulty for burning helium is
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that there are no stable nuclei with A = 5 or 8 in Nature. The 3a cycle9 is 
formed by Reactions (52)-(54). This has been proposed by Salpeter and Hoyle. 
Salpeter recognised that this had to be at least a two step cycle. Hoyle proposed 
that Reaction (53) must be resonant reactions in order to account for the amount 
of 12C present in the Universe. In particular, he postulated the existence of an 
excited energy level of the 12C* for allowing the resonant reaction to occur. In 
a landmark discovery of nuclear astrophysics, the existence of this energy level 
was confirmed experimentally by W. A. Fowler. In few words, two 4He fuse to 
produce a highly unstable 8Be (decay time 2.6 x 10~16s) that, before decaying, 
captures another 4He to produce an excited 12C*. As a final reaction, very 
few times the excited carbon nucleus 12C* decays by means of two forbidden 
radiative transitions to become 12C; but, by far, the most probable end of 12C* 
is to split back in three helium nuclei. Reactions (52) and (53) are resonant and 
endothermic, and the remaining (54) is by far more exothermic. Reactions (55)­
(57) are other important reactions during the helium burning stage.

9Its name is due that sometimes 4He nuclei are referred to as a particles.

The energy release due to the 3a cycle is

ergg 1 s 1 (58)

where 7g = 7yi087< and Y is the abundance of 4He.
K comparison of the energy release of the main nuclear reaction cycles (PP, 

CNO, and 3a) is presented in Figure (6).

7. The Equations of Structure

The full set of partial differential equations of stellar evolution is

Two boundary conditions are imposed at the centre (Mr = 0), we have r = 0 and 
L.r = 0. The others are set at the outermost layers lMr = M^, where T = Tatm 
and P = Patm] Tatm and Patm are the temperature (usually the effective one) 
and the total pressure at the stellar atmosphere.

In order to find the value of the temperature gradient V we have to consider 
its stability against convection. Let us consider the Schwarzschild criterium 
that states that if Vrad < Vad, V = Vrad, if Y.rad > Y adl V = Ycon,Ul where
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Figure 6. The rates of energy release due to the Proton-Proton, 
Carbon-Nitrogen-Oxygen, and Triple Alpha cycles (PP, CNO, and 
3a respectively). For the PP and CNO cycles we assumed X = 1, 
p = 1 gem.-3, and Xcn = 0.01. For the case of the 3a we considered 
Y = 1, p = 104gcm-3 which are typical values for helium burning.
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Here we have written the system of equations as a function of Mr. This is 
usually referred to as Lagrangian variable, in contrast to the Eulerian variable r. 
This is more adequate because of numerical reasons.

As the constitutive physics is strongly dependent on the chemical compo­
sition, it is necessary to simultaneously solve the equations for the evolution of 
the abundances.

7.1. Solution of the Structure Equations

Computing stellar evolution is possible only by means of numerical simulations. 
The method usually employed for such purpose has been devised by Louis Henyey 
(Henyey et al., 1964) in the end of fifties. Henyey proposed to employ a finite 
differences method with an implicit algorithm, writing temporal derivatives as 
backward differences. This has been masterfully described by Kippenhahn et al. 
(1967). The key advantage of such algorithm compared to others is its numerical 
stability. With this method it is possible to handle stellar models with few 
thousand of concentric shells and to compute its evolution even with an average 
personal computer.

7.2. Solution of the Chemical Evolution Equations

When computing stellar models, one possibility is to study them paying special 
attention to the evolution. In this case it may be enough to consider a nuclear 
reaction network (the name usually employed when referring to the system of 
differential equations that provide the chemical evolution of the stellar interior) 
with few tens of carefully chosen isotopes. When models are constructed to be 
applied to study stellar oscillations this strategy is adequate.

On the contrary, if we construct stellar models to compute the nucleosyn­
thesis products, things are far harder. In this case, the number of isotopes to be 
considered may be of thousands and the number of reactions connecting them 
can be an order of magnitude larger. A key property of these reaction networks 
is that they include reaction rates that operate on very disparate timescales, 
making the problem very stiff. A classical example of this difficulty is in the so­
lution of the detailed reaction network of PP cycle when we consider deuterium 
explicitly, the rates of Reactions (31) and (32) differ in a factor of 1018. The 
implicit method of Bader & Deuflhard is strongly recommended (Press et al., 
1992). A very nice account of the difficulties of nucleosynthesis calculations can 
be found in Timmes (1999).

When nuclear burning occurs in convective layers, convective currents have 
a characteristic timescale by far shorter than that of nuclear reactions. Thus, the 
entire convective zone is continuously mixed and burned. An extreme assumption 
is to consider that mixing is infinitely fast (instantaneous mixing). So, the entire 
convective zone remains homogeneous. Also, convective boundaries use to move, 
and this has to be considered in detail. Instantaneous mixing is not valid during 
the latest stages of massive stellar evolution close to the final core collapse.
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8. The Evolution of Stars

8.1. The Pre-Main Sequence of Low Mass Stars

Here we describe the stage usually called Pre-MS or PMS. We shall restrict 
ourselves to the case of low mass objects. For the case of higher mass objects 
the problem is far more complex.

Essentially, the PMS is the stage in which stars evolve from the initial es­
tablishment of hydrostatic equilibrium up to core hydrogen burning ignition. At 
the very beginning of the PMS the stellar matter is so opaque that the object 
is entirely convective up to its photosphere. This kind of structure is said to 
correspond to the Hayashi Line along which the stars initially evolve (see, e.g., 
Kippenhahn & Weigert 1990). For a given mass value, the Hayashi line is a very 
steep line that defines the red edge of the region of the HRD at which stars can be 
located. To the right side of this line hydrostatic equilibrium is not possible. In 
this initial stage the stellar structure is well approximated by a polytropic sphere 
with n=3/2 (see § 3.1). The object shines thanks to the release of gravitational 
energy due to contraction. This effect increases the internal temperature which, 
in turn, makes the opacity to decrease (see Figure (5)) and the centre of the 
star becomes radiative. So, the evolutionary track departs from the Hayashi line 
bending in the HRD to higher effective temperatures.

Here we have just introduced the fundamental concept of evolutionary track. 
This is generally referred to the path followed by a star in the HRD during its 
evolution10.

10Of course, it is possible to call this way the path that describe the change of other quantities, 
e.g., the evolution of the central conditions of the star: LogTc versus Log pc, but this is not 
the standard case.

The PMS ends when hydrogen burning establishes and the star arrives to 
the quite inappropriately called Zero Age MS (or simply ZAMS). These ages, 
defined in this case when the star has burned 1% of the original hydrogen content 
are given in Table (1). A typical PMS evolution on the HRD is presented in 
Figure (7). These tracks have been calculated with our evolutionary code for 
this lecture notes (Benvenuto & De Vito, 2003)

8.2. The Evolution of Low Mass Stars

Usually we call star an object that at some stage of its evolution shines with a 
luminosity fully provided by nuclear reactions. For Solar composition, stars have 
masses M > O.OSMq. Sub-stellar objects with O.OIGMq < M < O.OSMq release 
energy by nuclear reactions and gravitational contraction. These are the brown 
dwarfs. For even lower masses, M < O.OIGMq,, temperature is so low that the 
objects cannot undergo any nuclear reaction and are fed only by gravitational 
contraction (Burrows et al., 1995). These are the gaseous giant planets. For sub- 
stellar objects usually it is very important the burning of primordial deuterium 
by Reaction (32) but the PP cycle is not completed because the higher Coulomb 
barrier inhibits the occurrence of Reaction (33).

In Figure (8) (Sackmann et al., 1993) we show the evolution of our Sun. 
Its PMS is denoted by a dashed line and the object reaches the ZAMS at point
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Log(Tefr/K)

Figure 7. The PMS evolution for a set of stellar masses. Calculations 
start from a polytropic structure (n = 1.5) on their respective Hayashi 
tracks and are followed up to the onset of core hydrogen burning. Each 
curve is labelled with the corresponding mass given in solar units. These 
tracks have been computed by ourselves employing our stellar code.
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Table 1. Conditions at the end of the Pre-MS. Columns indicate the 
mass of the object in solar units, the age in million years and the decimal 
logarithms of the effective temperature in Kelvins, the luminosity in 
solar units, the central temperature in Kelvins and the central density 
in g cm 'l

M Age L°9 Teff Log L Log Tc Log pc
0.40 10244 3.557 -1.657 6.906 1.812
0.60 1391 3.571 -1.241 6.968 1.824
0.80 522.2 3.641 -0.686 7.051 1.857
1.00 331.9 3.694 -0.288 7.101 1.855
1.25 117.2 3.765 0.278 7.205 1.909
1.50 73.4 3.837 0.646 7.260 1.893
1.75 49.3 3.900 0.937 7.296 1.850
2.00 32.6 3.948 1.177 7.320 1.793
2.50 19.8 4.021 1.569 7.353 1.683
3.00 11.1 4.078 1.881 7.376 1.586

A. There, the star is burning hydrogen in its radiative core. B corresponds to 
the present Sun and E denotes the core hydrogen exhaustion that corresponds 
to the age of 10.91 Gyr. At that moment the star leaves the MS and starts 
to undergo hydrogen shell burning that dominates its energy balance, evolves 
to lower effective temperatures and develops a deep outer convective zone, as­
cending on the Red Giant Branch (or RGB, points F to H). The stellar core is 
strongly degenerate and undergoes heavy neutrino losses that make the maxi­
mum temperature to be located off-centre. Helium is suddenly ignited at point 
H on the track when the hottest stellar layers reach Tg « 1. These layers are 
strongly degenerate, which makes the pressure of matter to be weakly depen­
dent on temperature. In these conditions, helium ignition is initially unstable. 
This is the so-called helium flash. Helium burning ignition leads to an energy 
release that increases the temperature11 but, since the EOS is weakly dependent 
on temperature, the structure is only slightly modified but nuclear reactions are 
strongly accelerated. The flash progressively removes the degeneracy and the 
burning tends to stabilise. On a short timescale the object finds a new, long 
lived evolutionary stage called horizontal branch (or HB, corresponding to point 
K on the track). Helium is burned stably on the HB and after its exhaustion on 
the core, it develops a helium shell burning and evolves to the red region in the 
HRD again, now on the Asymptotic Giant Branch or AGB. At these conditions 
the star begins simultaneously to suffer mass loss and thermal pulses. Thermal 
pulses are due to the interaction between the shells burning hydrogen and helium 
and have a timescale of ~ 105 y, far longer than the timescale in which a sound 
wave goes across the star. When the star has lost a large amount of mass, starts 
to evolve bluewards to become a carbon-oxygen WD star of 0.541M©.

nAt these conditions the pressure is dominated by degenerate, non-relativistic electrons while 
the specific heat is dominated by the non-degenerate gas of nuclei.
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Figure 8. The evolutionary track of our Sun. For details, see 
text. Reprinted from Sackmann, Boothroyd & Kraemer, “Our Sun. 
III. Present and Future”, ApJ, 418, 457, 1993, https://ui.adsabs. 
harvard.edu/abs/1993ApJ... 418..4573, ©AAS. Reproduced with 
permission.

https://ui.adsabs
harvard.edu/abs/1993ApJ
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Figure 9. The structure and composition of the present Sun. The 
values used for scaling are Tc = 1.54 x 10' K and pc = 162 g cmr3-, also 
L = L0 and R = Rq. These results have been computed by ourselves 
employing our stellar code.

It is interesting to discuss the present structure of the Sun. Its main char­
acteristics are shown in Figure (9). Most of the luminosity (dominated by the 
PP cycle, although the CNO reactions give some contribution) is released in the 
inner 40% of mass. Remarkably, the profiles of temperature, density and hydro­
gen and helium abundances are monotonous. However, this is not the case for 
the profile of 3 He abundance (enhanced by a factor of 100). This is due to the 
differences in the Coulomb barriers of the Reactions (31) and (32), compared to 
those occurring in the case of Reactions (33) and (34). In the core of the Sun 
the temperature is high enough to produce and burn 3He. However this is not 
the case in outer layers; there 3He burning is not so efficient.

8.3. The Evolution of Intermediate Mass Stars
Usually, we consider as intermediate mass stars those objects that ignite helium 
in non-degenerate conditions (they do not suffer a helium flash) and develop a 
degenerate carbon oxygen core after helium core exhaustion. This sets the mass 
interval for these objects in the range of 1.8 — 2.2 < M/M& <8 — 9 (Chiosi, 
1997). '

Typical tracks of intermediate mass stars are shown in Figure (10) and some 
relevant characteristics of the models are presented in Table (2).

The ZAMS for stars in this range of masses is at temperatures appreciably 
higher than those of lower mass objects. As consequence, they have radiative 
outer layers while the deep interior has to be convective to transport the large 
amount of energy released by the CNO cycle. Due to the occurrence of convection 
in the deep interior, the stars burn the available hydrogen in the entire convective
zone.
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The meaning of points A-I given in Table (2) is presented in Figure (11) for 
the case of a 4Me object. This is valid for the rest of the evolutionary tracks 
presented in this subsection; notice that all of them have a similar morphology. 
Evolution begins at point A that corresponds to the ZAMS, where we set age 
to zero. Point B corresponds to the minimum effective temperature during core 
hydrogen burning MS while point C denotes the end of the latter. From that 
stage on, stars develop a shell burning hydrogen and the evolutionary track goes 
across the HRD in a relatively short timescale (as compared to MS duration) 
becoming red giant (point D). Because of the relative shortness of this timescale, 
finding stars at this stage is not frequent and because of this reason this region 
of the HRD is known as the Hertzsprung gap. The star begins to develop a deep 
outer convective zone while the core has not reached temperatures of hundred 
million Kelvins, necessary to ignite helium, yet. Such ignition occurs when the 
stars reach a luminosity maximum (point E). Remarkably, the rise of another 
source of energy forces the stars to rearrange to a structure that evolves towards 
lower luminosities12 (up to point F). Most of core helium is burnt out in convec­
tive conditions during a loop (from points F to H) in which the star spends an 
appreciable timescale. At these conditions, helium core is almost exhausted and 
the star develops a deep convective zone and evolves towards higher luminosities 
up to the end of the calculation (point I). This is consequence of the outward 
motion of the shells burning hydrogen and helium.

12This occurs in a similar way to the case of low mass objects at the onset of the helium flash.

After these stages, while the objects are still in the red part of the HRD, the 
mentioned shells become closer and closer forcing the stars to undergo thermal 
pulses in a way similar as mentioned for the case of low mass objects. However, in 
this case the timescale of pulses is at least an order of magnitude shorter (104 y). 
Simultaneously, during thermal pulses, stars undergo mass loss. When most of 
the hydrogen rich envelope has been lost, the star evolves on a short timescale 
(comparable to that of a thermal pulse) to a compact structure reaching effective 
temperatures much higher than those corresponding to the ZAMS at the same 
range of luminosities. Then, the evolutionary track star bends down starting the 
pre-WD stage. At this moment the star is composed by a carbon-oxygen core 
surrounded by a helium shell that has « 1% of the stellar mass, and an even less 
massive outermost hydrogen layer.

8.4. The Evolution of White Dwarfs

As discussed above, WDs represent the final state of evolution of low and inter­
mediate mass stars. This kind of objects is very important for asteroseismology 
since it is well known that they undergo non-radial pulsations. Because of this 
reason, we present some characteristics of these objects when considered as con­
sequence of stellar evolution. Here we shall not discuss the WD composition 
in details but consider a very simple case to show the general trend of their 
evolution.

In Figure (12) we show a typical set of cooling tracks of WDs for different 
masses from rather low (0.3Mo) to high (1.2MO) values. Here we have assumed 
that all models have the same homogeneous chemical composition of carbon and
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Figure 10. Typical HRD for the case of intermediate mass, Solar com­
position stars. The masses corresponding to each evolutionary tracks, 
shown in solid blue lines, are indicated in solar units. Lines of con­
stant radii are shown in thin red lines. On the tracks, dots indicate 
age intervals. These are of 5 x 10' yr for 3Me, of 2 x 10' yr for 4Me 
and of 10' yr for 5Me and 6M@. These tracks have been computed by 
ourselves employing our stellar code.
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Table 2. Selected stages of evolution of the intermediate mass stars 
presented in Figure (10). Columns indicate the point on the respective 
track, the age in million years, the decimal logarithms of the luminosity 
in solar units, effective temperature and central temperature in Kelvins, 
and central density in g cm-3. The last two columns present the central 
abundances of hydrogen and helium. For the position of the points A-I 
on the tracks, see Figure (11).

Point Age Log L Log Teff Log Tc Log pc Xc
A 0.00 1.885 4.093 7.380 1.635 0.7293 0.2568
B 351.75 2.069 3.976 7.462 1.805 0.0417 0.9453
C 359.46 2.157 4.025 7.533 2.207 0.0003 0.9867

3M- D 370.44 1.722 3.712 7.750 4.040 0.0000 0.9871
E 374.48 2.570 3.632 8.042 4.819 0.0000 0.9854
F 389.24 1.808 3.702 8.059 4.448 0.0000 0.8937
G 476.99 1.909 3.701 8.114 4.304 0.0000 0.3333
H 519.99 2.002 3.685 8.231 4.496 0.0000 0.0080
I 523.38 2.933 3.602 8.078 5.980 0.0000 0.0000

Point Age Log L Log Te$$ Log Tc Log pc
A 0.00 2.356 4.176 7.413 1.479 0.7294 0.2566
B 159.32 2.576 4.061 7.491 1.620 0.0485 0.9386
C 163.39 2.656 4.108 7.573 2.035 0.0003 0.9868

4M- D 167.08 2.207 3.697 7.818 3.909 0.0000 0.9871
E 168.07 2.887 3.623 8.075 4.468 0.0000 0.9845
F 177.83 2.333 3.681 8.100 4.120 0.0000 0.7969
G 194.75 2.510 3.708 8.142 4.081 0.0000 0.3384
H 213.84 2.439 3.675 8.239 4.251 0.0000 0.0215
I 214.71 3.200 3.594 8.270 5.713 0.0000 0.0000

Point Age Log L Log Te$$ Log Tc Log pc
A 0.00 2.705 4.236 7.435 1.359 0.7369 0.2492
B 92.13 2.957 4.126 7.517 1.494 0.0466 0.9405
C 94.39 3.026 4.169 7.599 1.956 0.0001 0.9870

5M- D 96.03 2.602 3.682 7.876 3.833 0.0000 0.9871
E 96.46 3.191 3.611 8.095 4.160 0.0000 0.9817
F 102.57 2.735 3.663 8.128 3.921 0.0000 0.7155
G 105.49 2.994 3.828 8.142 3.911 0.0000 0.5459
H 115.84 2.863 3.649 8.303 4.222 0.0000 0.0038
I 118.37 3.602 3.575 8.380 5.777 0.0000 0.0000

Point Age Log L Log Te$f Log Tc Log pc
A 0.00 2.988 4.282 7.454 1.259 0.7284 0.2576
B 59.70 3.255 4.176 7.536 1.394 0.0469 0.9402
C 61.22 3.321 4.218 7.630 1.823 0.0002 0.9869

6M- D 62.04 2.913 3.668 7.927 3.769 0.0000 0.9871
E 62.27 3.449 3.600 8.110 3.978 0.0000 0.9805
F 66.32 3.068 3.647 8.151 3.762 0.0000 0.6585
G 68.25 3.360 3.919 8.168 3.757 0.0000 0.4755
H 73.50 3.182 3.632 8.323 4.078 0.0000 0.0044
I 74.81 3.912 3.557 8.460 5.927 0.0000 0.0000
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Figure 11. The track corresponding to the 4Me object, indicating 
the position of the points A-I on the tracks presented in Figure (10) 
whose characteristics are given in Table (2).

oxygen (Xc = Xo = 0.5) representative of the case of intermediate mass WDs and 
neglected the presence of lighter elements in their outer layers. At present it is 
currently accepted that low mass WDs ^M < O.4M0) are due to binary evolution 
and should be made up by helium, while the most massive ones ^M > LOA/.) 
are expected to be composed by oxygen, neon and magnesium. In Figure (13) 
we show the luminosity evolution of the same set of models. Ages have been set 
to zero at the beginning of the tracks shown in Figure (12); so, they correspond 
only to cooling evolution.

WDs are simple and well understood objects; so, they can be considered 
as cosmic clocks for the stellar population where they belong. Also, the most 
massive objects are expected to undergo crystallization. This is expected to 
occur when the Coulomb interactions are strong enough. For a one component 
plasma it occurs when F ~ 171. where

INI
kT^ ‘ (63)

Here Z is the charge of the ions, and (r¿) is the ionic mean distance. F is the 
ratio between Coulomb and thermal energy. Crystallization changes the specific 
heat of the WD interior and even releases a latent heat. This has some impact 
on the cooling evolution of these objects.
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Figure 12. The evolutionary tracks for carbon-oxygen WDs. We as­
sumed an homogeneous composition of Xc = Xo = 0.5. Solid black 
lines are labelled with their corresponding masses given in solar units. 
For comparison, we show the ZAMS and constant radii lines. Notice 
that, as it is shown in Figure (4), the larger the mass the smaller the 
radius. After reaching the maximum luminosity in each track, the WD 
cools down with decreasing radius. This is especially noticeable for 
the case of low mass objects and nicely accounts for the apparent dis­
crepancy between the theoretical mass radius relation for cold WDs and 
observations. These tracks have been computed by ourselves employing 
our stellar code.
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Figure 13. The evolution of the luminosity for the WDs considered 
in Figure (12). Types of lines are labelled with the corresponding mass 
values, given in solar units. The zero age has been set at the beginning 
of the tracks shown in Figure (12); so, the evolutionary scale corre­
sponds only to the cooling evolution of the objects. Crystallization is 
not included.

8.5. The Evolution of Massive Stars
Usually massive stars refer to objects that end their lives in a catastrophic way 
by an implosion and (at least in some cases) a subsequent supernova explosion. 
Although they undergo strong mass loss, at the end of their lives they have masses 
well above, the Chandrasekhar limit. Thus these stars cannot end their lives as 
WDs. For this to occur it is usually considered that their initial masses should be 
M > 8 — 9M&. These objects are capable to undergo all the main thermonuclear 
burning cycles: hydrogen, helium, carbon, neon, oxygen, and silicon. Due to 
their high mass values they are very bright, allowing them to be detected far 
from us.

There are few facts that make the evolution of massive stars appreciably 
uncertain. Perhaps the most important is that massive stars are not numerous, 
and due to their short lives they are difficult to observe. Another relevant sources 
of uncertainty are mass loss, overshooting and rotation.

It is well known that massive stars undergo heavy mass loss. This is de­
tectable in detailed spectroscopic observations from which we can deduce the 
value of the mass loss rate M, which is rather uncertain. If t is the timescale 
of stellar lives and we multiply it by M we find that Mt is comparable to M. 
In other words, massive stars lose a non-negligible portion of their masses. This 
brings the possibility to detect material that has already undergone nuclear re­
actions emerging at their photospheres.

Overshooting is another phenomenon usually considered in massive stars. 
The physical reason for its occurrence is simple. Let us imagine, as discussed
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above, that convection is the upwards and downwards motion of bubbles. It 
can be shown that when bubbles reach the position of the convective boundary 
indicated by the Schwarzschild criterium what goes to zero is not the velocity but 
the acceleration. So, at that position the bubble begins to brake down, moving 
beyond the classical boundary. This is still an open problem that has been not 
fully solved. So, astronomers use to consider overshooting in a parametric way 
in order to fit observational data, in particular the width of the upper MS band 
(sacrificing predictivity). The new parameter is a0.0 which provides the extension 
lov of the convective zone beyond the standard edge as lav = amHp.

Perhaps the most difficult phenomenon to treat properly is rotation. Rota­
tion is fundamental in binary systems since orbital angular momentum can be 
transferred to stars by mass exchange making them to be spin up13. But it is 
also important for isolated objects, especially for massive stars that are known 
since long ago to be fast rotators (their rotation rate can be a non-negligible frac­
tion of the breakup velocity). Rotation not only makes the figure of equilibrium 
to depart from spherical shape but more importantly, it gives rise to currents 
of meridional circulation that advect material, changing the composition of the 
stellar interior in a way that does not occur in non-rotating objects. On Earth, 
rotation is responsible for the existence of sea currents that advect heat and 
modify the weather in a quite noticeable way (due to the Gulf Current, Norway 
is not so cold as Alaska or Siberia). The problem is that the equations to handle 
shellular rotation (Zahn, 1992) (rotation velocity constant on isobars14) are of 
fourth order in space, making it very difficult from a numerical point of view.

13This is the standard mechanism considered for the existence of recycled millisecond pulsars.

14This is considered because the diffusion coefficient of angular momentum is expected to be 
strongly anisotropic: it should be very large in the direction of isobars and much smaller in 
vertical direction. See, e.g., Maeder (2009) for further details.

In Figure (14) (Maeder & Meynet, 1987) we show a typical theoretical upper 
HRD with the evolution of a set of massive stars. The MS widens for M « 4OAf0 
while for even more massive objects it narrows because of heavy mass loss and 
overshooting. After hydrogen core exhaustion, while stars with M < 4OM0 burn 
helium as red objects, those more massive do it in the blue region at the left of 
the ZAMS. They are located there since they have lost a large fraction of the 
hydrogen rich outer layers, becoming Wolf-Rayet stars.

The evolution of the internal structure of the 6OAf0 object (Maeder & 
Meynet, 1987) is presented in Figure (15) where it can be seen the changes 
of the surface chemical composition as consequence of the interplay of convec­
tion and mass loss. This is very important, since these abundances should be in 
agreement with the predictions of the ONO cycle.

In Table (3) we give some important quantities that describe the evolution of 
these massive stars. As in the previous ranges of masses, the main characteristic 
is that, since luminosity grows with mass faster than linear, and the fuel available 
goes with the mass, the timescale of evolution is a steep decreasing function of 
the stellar mass.
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Figure 14. Typical upper HRD for Solar composition massive stars 
with mass loss and overshooting. Hatched areas indicate hydrogen core 
burning stage (MS band), and core helium burning as red objects for 
M < 40MQ but as blue for more massive ones (to the left of the ZAMS). 
Here the parameter of MLT is amit = 1.5 and for overshooting it has' 
been assumed ao,u = 0.3. For further details see text. Reprinted from 
Maeder & Meynet, A&A, 182, 243, reproduced with permission ©ESO.
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Figure 15. The internal evolution of a 6OM0 object subject to mass 
loss and overshooting. Tilted hatch indicates active nuclear burning, 
vertical lines denote the presence of a gradient of chemical composition, 
whereas curls depict convective zones. The upper solid line indicates 
the mass coordinate of the photosphere. Notice that due to mass loss, 
nuclearly processed material emerges to the stellar surface and should 
be detected by observations. Reprinted from Maeder & Meynet, A&A, 
182, 243, reproduced with permission ©ESO.
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Table 3. Selected stages of evolution of the massive stars presented 
in Figures (14) and (15). Columns indicate different important evolu­
tionary stages: A, B, C, and D correspond to the conditions near the 
ZAMS, hydrogen core exhaustion, core helium ignition, and its exhaus­
tion, respectively. We give the age in million years, the mass in solar 
units, the logarithm of the mass loss rate in solar masses per year, the 
logarithm of the luminosity in solar units, the logarithm of the effective 
temperature given in Kelvins, and the central abundances of hydrogen, 
helium and carbon ÇYCc\

20 A /.
Point Age M Log M Log L l°9 Ten xc Yc YCc

A 0.24 19.996 -7.844 4.643 4.552 0.692 0.288 0.0001
B 8.79 19.098 -6.448 5.064 4.438 0.000 0.980 0.0002
C 8.82 19.084 -6.085 5.147 3.980 0.000 0.979 0.0007
D 10.06 14.311 -5.280 5.339 3.601 0.000 0.000 0.1167

4OA/0
Point Age M Log M Log L L°9 TeH xc Yc YCc

A 0.21 39.899 -6.345 5.374 4.652 0.684 0.295 0.0001
B 4.79 32.357 -5.286 5.679 4.375 0.000 0.980 0.0002
C 4.80 31.777 -3.924 5.825 3.673 0.000 0.976 0.0008
D 5.43 9.975 -4.553 5.404 5.268 0.000 0.000 0.0977

603/.
Point Age M Log M Log L l°9 Ten xc Yc YCc

A 0.17 59.757 -5.864 5.731 4.693 0.685 0.295 0.0001
B 3.71 42.999 -5.157 5.999 4.583 0.000 0.981 0.0002
C 3.72 42.959 -5.000 6.034 4.267 0.000 0.980 0.0003
D 4.32 21.384 -4.553 5.928 5.313 0.000 0.000 0.0432

120ATo
Point Age M Log M Log L l°9 Ten xc Yc YCc

A 0.12 119.456 -5.398 6.254 4.739 0.685 0.294 0.0001
B 2.92 80.916 -5.114 6.449 4.720 0.000 0.980 0.0002
C 2.94 80.724 -4.551 6.511 4.503 0.000 0.979 0.0005
D 3.45 64.019 -4.553 6.552 5.292 0.000 0.000 0.0124
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9. Concluding Remarks

In these lectures we have presented a brief description of the most important 
characteristics of stellar evolution in order to provide a basis for the understand­
ing of the properties of the most frequently studied stellar pulsators. In doing so, 
we have made a description of the main physical ingredients that play a central 
role in stars and then, the fundamental characteristics of the process of stellar 
evolution.

It is important to remark that in this work we have not been able to refer 
to many important processes that occur in stars, that are relevant for a correct 
understanding of these objects. For example we did not describe semiconvection 
and diffusion that are also important for the determination of the internal chem­
ical profiles. We have only made a brief reference to binary evolution and did 
not quote the neutron capture processes that are considered as responsible for 
the existence of elements heavier than those of the iron peak in Nature. Most of 
them are described in the textbooks cited in the Introduction. Also, we did not 
discuss the solar neutrino emission.

We hope that this work will be useful for the reader that intends to enter 
in the exciting realm of stellar astronomy.

The author wants to acknowledge the SOC of this School for inviting him 
to deliver these lectures. Also, he wants to acknowledge Dr. Gabriel Ferrero for 
his help in the preparation of Figure (1).

This work has made use of the VizieR catalogue access tool, CDS, Stras­
bourg, France (DOI: 10.26093/cds/vizier). The original description of the VizieR 
service was published in 2000, A&AS 143, 23.
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Low Amplitude Adiabatic Non-radial Stellar 
Oscillations

Omar G. Benvenuto1^

1. Introduction

In this lecture we shall present the problem of low amplitude, adiabatic 
non-radial stellar oscillations starting from first principles. We shall derive 
the equations that describe these oscillations and also present a numerical 
scheme to solve them. Because these are low amplitude oscillations, they 
are linear in the amplitude of the perturbation but non-linear with respect 
to the eigenfrequency. This is a classical problem treated in the books 
presented by Cox (1980) and Unno et al. (1989) and more recently by 
Aerts et al. (2010).

1 Facultad de Ciencias Astronómicas y Geofísicas, Universidad 
Nacional de La Plata, and Instituto de Astrofísica de La Plata 
(CCT-CONICET-UNLP), La Plata, Argentina 
Email: obenvenu@fcaglp.unlp. edu. ar

Abstract.
We present the problem of low amplitude, adiabatic non-radial 

oscillations starting from first principles. We describe the perturba­
tions imposed to the models, assuming that its non-perturbed struc­
ture is spherical. Then, we restrict ourselves to the case of adiabatic 
oscillations, presenting the equations written in terms of the Dziem- 
bowski variables. We describe a numerical method for solving these 
equations based on finite differences and apply it for the simple case 
of polytropic spheres. A computer code based on this algorithm is 
available at the web page of the school. This method can be easily 
generalised for computing the case of low amplitude, non-adiabatic, 
non-radial pulsations.

Key words: asteroseismology — stars: oscillations — stars: inte­
riors
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The remainder of this work is organised as follows. In Section (2), 
starting from first principles, we derive the equations of non-radial oscil­
lations corresponding to a non-rotating model in hydrostatic and thermal 
equilibrium. In Section (3) we restrict ourselves to the case of adiabatic 
oscillations and write the equations in the Dziembowski variables. Then, in 
Section (4) we present a finite differences algorithm devised to solve these 
equations including some comments on how to construct an initial approx­
imate solution to be relaxed by iterations. In Section (5) we apply this 
algorithm to the particularly simple case of polytropic spheres. Finally, in 
Section (6) we give some general comments about the applicability of this 
method to the case of non-adiabatic oscillations and also to compute the 
oscillations of realistic stellar models.

2. The Equations of Oscillations

Let us begin by writing the equations of continuity (1), of Euler (2) (we 
neglect viscous stress), conservation of energy (3), Laplace (4), and energy 
flux (5)

-^ + V. (pr) = 0, 
ot x '

p\ — + v. V v = —VP — pV$, 
/

T — + v. V S = —pUn + e-0) - V. F, 
\ot /

V2<I> = 4tvGPi

F = -K^T =----- -T3VT. 
3np

(1)

(2)

(3)

(4)

(5)

The symbols have their usual meaning: p is the density, v is the velocity, 
P is the pressure, $ is the gravitational potential, G is the gravitational 
constant, T is the temperature, S is the entropy, En (e^) is the energy 
release (loss) due to nuclear reactions (neutrino emission), F is the energy 
flux, K is the conductivity, a is the radiation constant, c is the velocity of 
light and k is the opacity. For simplicity here we shall ignore convection.

In the case of non-rotating objects in hydrostatic and thermal equilib­
rium these equations reduce to
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dp _ 
dr

GMr
2 O (6)

dMr 
dr

= 4?rr2p, (7)

—= 47vr2p(en - e^, (8)

dT 3 up 1 Lt
(9)dr 4ac T3 4ivr21

where \L is the mass enclosed by a sphere of radius r and Lr = 4tf7'2F is 
the luminosity emerging from its surface.

There are two ways of considering perturbations to any attribute of 
the stellar interior, these are the Eulerian and Lagrangian perturbations. 
At a given point the attribute changes from /o^ t° f^A) (Equation 10) 
due to an Eulerian perturbation

/(r,i) = ME + /(r,i). (10)

If a portion of the star undergoes a displacement £ = r — f0, the attribute 
changes from foirV) to f(r,t) due to a Lagrangian perturbation (Equa­
tion (11))

/(Ft) = foOh) + 6f(r0A\ (11)
These formulations are related by Equation (12)

^f(At) = f'O^t)+(. Vfo(r). (12)

We shall consider that the non-perturbed structure is at rest, in hy­
drostatic and thermal equilibrium (so 7 = 0) and write the perturbed 
equations to the lowest order. These are

+ v. (p017) = o, (13)

Po—+ VF T/zoV^ + pVío = 0, (14)

PoTo^S'+f.VS-o) = [p(sn-^)]'-V.F', (15)

V2$' = 4^Gp, (16)
F = -K^T' - K'^T. (17)

If the non-perturbed structure is spherically symmetric, we have p0 = 
PoW, Fo = T0(r), $0 = ^oO'), etc. We apply a perturbation considering
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that all quantities are proportional to exp (tat). Then, the operator 
can be replaced by ia and the perturbations are written as £ = yyyy 
where the normal part is ^ = (0, ^g,^). Also, it is convenient to define 
the normal part of the gradient and the Laplacian operators as

1
z'2 sin2 6

-. _ 1 / d 1 d \ 
' “ r \ ’ 86 ’ sin 6 88 / 

. „ 8 ( . 8\ 82 " 
8111696 )'" 96) + 84?.

(IS)

(19)

(20)

It is straightforward to verify that the angular part of the equations 
of motion are diagonal in the base of the spherical harmonics, defined as

y-(0^) = (_l)(-+l-l)/2 ^±1E_H2: ' p^\co^6ym* (21)

where P^ (cos 9) are the associated Legendre polynomials that fulfil the 
differential equation

(1-92)i/54^1 + (?(?+!)-A^^l’rto-O, (22)

where p = cos 6. Let us remind the fundamental property that spherical
harmonics are orthogonal and normalised

Y;,,.(6,<»¥<,,M 9) sinedM* = 6tA.,m-- (23)

Let us write the perturbation as

(24)

Applying it, together with the thermodynamic relation 

dp d6P pT
(25)

where

Vad =
¿HogT 
dlogP (26)
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and

dlogF 
dlogp ViT)

s
we find the equations of motion

1 d
r2 dr

1 d
r2 dr

1 dP' g
---------F — 
p dr pc2

1 d In P . /
----------------Sr +
Fi dr V

2d^'\ 1(1+1)
dr .2

iapTdS = [p(s

T2
2

P'
pc2

d& „ pT _
)Sr + -y- = gVad-—5S, 28 

dr P

-^-^N = Vad^5S,(29) 
azrz P

dr
1 d z 9 .

-AtvGVV—58,(30)

^-F;-K'^,(31)

;) - Mat-(32)

There,

N2 = —gA = g

c2 
L^^PX)^

1 d In P d In p \
F! dr dr /

(33)

(34)

are the Lamb and Brunt-Vâisâlâ frequencies, respectively. Also
Cg = PL\/p is the adiabatic velocity of sound, and g = GMr/r2 is the 
acceleration of gravity.

3. The Adiabatic Oscillations

We shall restrict ourselves to the case of adiabatic oscillations. So, we
assume that 5S = 0 and the equations are

ld/9,.3 IdAnP^ / L2A P' Gt + 1) ,
r2 dr^ r Fi dr r \ a2) pc2 a2r2

1 d Í 2d^ \ 
------ 1 rz-----  
r2 dr \ dr /

f(f+l)
.2

, / P N2 \
$ -47TG/) —+ —(J 

\pc2s g /

(35)

(36)

(37)
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If we neglect the perturbations on the gravitational potential (Cowling 
approximation), it is possible to make a simple qualitative analysis usually 
called “Local Analysis”. Let us assume that the coefficients of the oscillation 
equations are far smoother than the eigenfunctions. If we assume that they 
are proportional to exp ^ikTr\ it can be shown that

For the mode to be oscillating, it has to fulfil a2 > L2 and a2 > N2,. or 
a2 < L2 and a2 < N2, see below, Figure (8).

Let us define the variables

<r 1 (P' 1
ffi = —; y2 = — — + $ ; y3 = —$ ; y* = (39)r gr \ p / gr g dr

These correspond to

Cr = ryv, P' = pgr(y2 - yi); $' = gry3; — = gry4 (40)

Then, we arrive to the Dziembowski’s form of the equations of adiabatic 
oscillation

= (V9 "" 3N + 
dx x

"^+1) v
V2 + Vgy3, (41)

= (Cw2 - A*)y4 + (A* - U + 1) y2 ~ A*y3, (42)

^3 iiA1- U)y3 + y4, (43)

= ua*ia + uVg^ + ax
£(£ + 1) - UVg y3 - Uy4. (44)

Here there appear the auxiliary variables that describe the effects of 
stellar structure on the oscillations and also the dimensionless frequency. 
These are
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1 din P _ gr 
c2 '

(45)Ti din r

u
din M, 
din r

/ \ 3/ r \ /
'

47rpr2 
Mr 1 

'M\
(mJ1

(46)

(47)

1 din P din pA = —rA = -A2 = 
g Ti din r din r1

(48)

ps
2 2
~a gm' (49)

The inner boundary conditions can be found taking into account that 
V —> 3, U —> 0, A* —> 0. The conditions are

C^2
—^yi -V2 = o,

^L - Ui = 0.

(50)

(51)

The other two equations necessary to close the system are imposed on 
the outer layers of the star. There we have Vg —> Vg(x = 1); U —> 0; 
A* —> A*(x = 1). The conditions are

(52)

(53)

Due to the linearity of these equations with respect to the dependent 
variables yt, they do not provide the amplitude of the oscillations. Then, 
we have to add an arbitrary normalisation condition that is usually taken 
at the stellar surface as yi(r = R) = 1.

4. A Finite Differences Method of Solution

Let us now consider a method for solving these equations. This has been 
presented by Córsico & Benvenuto (2002) and is a generalisation of the 
scheme presented by Kippenhahn et al. (1967) to compute stellar evolution. 
The equations of low amplitude, adiabatic non-radial oscillations have the 
form



52 Omar G. Benvenuto

dyt , z z= Myi,y2,y3,y4,w), 2 = 1,...,4. (54)

We shall divide the star in several concentric layers and write these 
equations in finite differences. We shall define the values of the dependent 
variables as y^ where the first subscript indicates the variable and the 
second denotes the point at which it is evaluated. Among the variety of 
possible ways to adopt (for further details see, e.g., Press et al. 1992), we 
shall employ

~ ~ ^¿ ww a ^2j+t -h^i i y^ — o,

z = 1,--- ,4;j = 1,--- ,7V- 1

where

yt,j + yty+i 
=------ 2------ '

(55)

(56)

Also, the boundary conditions B, = 0,2 = 1,2,3 (outer) and Ci = 
0,2 = 1,2 (inner) are written in a similar way.

Notice that these equations are local with respect to the eigenmodes, 
since their derivatives are dependent on their values at the same point. The 
eigenvalue is “non-local” in the sense that it is present in these equations 
regardless where you are computing the derivatives.

To solve the difference equations let us employ a Newton-Raphson 
technique. We have to provide an approximate solution of a particular os­
cillation mode and improve it by successive iterations. So, the algorithm is 
devised to find the corrections necessary for the initially proposed solution 
to be relaxed to an accurate solution of the mode, fully consistent with the 
stellar structure of the non-perturbed model.

Notice that while the Equations (41)-(44) and (50)-(53) are linear in 
the functions yt, they are non-linear with respect to the eigenfrequency.

5yi,i + ■ ■ ■ + t; " dy4^ 3 - - 5a; — — B^; k — 1, 2, 3, (57)
Oyr4,i vw

^,3 + ■ ■ ■ + 9^- 5d^ + 8^ 5dW + ■ ■ ■ + ^4J+1+ (58)

^60; = -^; 2 = 1,...,4; j = 1,2,..., TV - 1, "

w dy4iN + ■ ■ ■ + w dy4iN 3 5a; — —Cm; m — 1,2, (59)
oyi,N 0y4,N vw
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These expressions can be written as a matrix equation. This is a sparse 
matrix (most of the elements are zero) which, with the exception of the 
first and last blocks, has the non-zero elements in blocks of four rows and 
eight columns. The first block can be written as

Introducing the auxiliary vectors U, V, and W, their first seven com­
ponents are defined by

r Ml.
M,i ' ''

8Bi
' ' ' M,i 0 0 0 " ’ 0 8By

div Ml

-Bi 1
8B2
8yi,i ' ' '
Ml
M,i ' ''
8G2

8B2
' ' ' 8y4A 

8B3
' ' ' M,i

8G^

0
0

Ml

0
0

Ml

0
0

Ml

" 51/1,1 " 
51/2,1 
51/3,1

0 
0 
Ml

-b2
-b3

" 51/4,2

8yi,i ' ' '

Ml

' ' ' 8y4,i

8G^

8yi,2

8G^

8y2,2

8G^

Ml

Ml

51/4,1
51/1,2
51/2,2

- 51/3,2 .

8y4,2

Ml

du

8G\ -G^

. 1

- 8yi,i ' '' ' ' ' 8y4,i 8yi,2 8y2,2 8y3,2 - _ 8y4;2 du

(60)

" 6yi,i " 
51/2,1 

5i/3,i 
^2/4,1 
^2/1,2 
51/2,2

- 51/3,2 .

Uy VI Wy
U2 V2 W2

51/4,2 
ÔUJ

1
(61)

U7 W W7

and are the solution of the matrix equation

The other components of the auxiliary vector are defined by

r Ml.
8yi,i ' ' '
8B2
8yi,i ' ' ' 
Ml
8yi,i ' ' ' 
Ml
8yi,i ' ' '

8Bi
' ' ' 8y4,i

8B2
' ' ' 8y4,i

8B3
' ' ' 8y4,i

Ml
' ' ' 8y4,i

0
0
0

Ml 
8yi,2

0
0
0

Ml 
8y2,2

0 "
0
0

Ml 
8y 3,2

" Bi 
u2

Vi 
v2

W7 " 
w2

=

" 0
0 
0 
Ml

8B4

Ml 
8uj

-By
-b2
-b3
-Gi8y4;2

Ml
- 8yi,i ' ' '

M£ 
' ' ' 8y4,i

8Gj 
8yi,2

8G\ 
dy2,2

8G\ 
8y3,2 -

. ^7 v7 w7 _ 8G\ 
8y4,2

Ml 
du -GX

(62)
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where we have employed the auxiliary vectors

" 8y4d "I r u4„ 
8y 1,3+1 _ u43A

8^2,j+i U4jA

. Nsj+l J L U4jA

and computed by the expressic

r ^3 8G{ 9G{ 9G{ 1

V43 F ^47+4
-2 V4J+2 tV4j+2 1
-3 k^y+a PEy+s J "

)U

, (63)

" ''' 4' +
1 8yi,j+i 8y2j+1 8y3j+1
j 9G3, 9G3, 9G3,

U4j V4j W4j
U4j+i V4j+i W4j+i
U4j+2 V4j+2 W4j+2

. ^'+3 C4j+3 W4j+3 _

=

8y4,j+i ' 1 n
9G2 C

2 dy+j+r 8y2j4i 8y3j+1
i 9Gt 9Gt 9Gl

8y4,j+i • 2 ,2
SG3 «3

8yi,j+i 8y2j+1 8y3j+1
j 9G4 9G4 9G34

- 04 8yi,j+i 8y2j+1 8y3j+1 _

8y4,j+i 1 3 /3
ÔG^ nj j

the corrections and find the last block of the matrix. This is written as

«1 =
dG 77 dG 77 dG TT 9GÍ 

+ ÍTy-i , (65)= ^ + U43_3 — + U43_2 — 
oy4,j dyld J dy2J
9G3, 9G3 9G3

= + ^-3 W^ + V43-2083 J Oy !J J Oy2ij
47 9G3

+ V4j_i ,
9U3,3

(66)

dGi 447 dGi
— G; + 1T4J-3 + IEy-2

J dyu 3 dy2j
447 9G3.

+ W^y-i .
9^3,3

(67)

With these expressions we reduce the information necessary to solve for

This expression allows us to find the corrections to the quantities cor­
responding to the central part of the model together with that for the 
eigenfrequency. Employing them in Equations (61) and (63) backwards we 
find the rest of the corrections that are applied to the proposed solution.

F aN-i def"1 9G^-3 9G^-3

P^' 

pr^
a2

a3

8yi,N 
9G^21 
8yi,N 
dG^-1 
8yi,N

8y2,N 
9G^-3 
8y2,N 

dG^-1 
8y2,N

8y3,N 
9G^-3 
8y3,N 

9G^21 
dy3,N

8y4,N 
9G^_ 
8y4,N 
dG^-1 
8y4,N

8y4,N-i 
5yi,N 
8y2,N

- _7i^ 1 -

-73Ar-1

a4

0
0

ac^-1 
8yi,N 
9Ci 

8yi,N 
9G2 

8yi,N

9G^-3 
8y2,N 
9Ci 

8y2,N 
9G2 

8y2,N

9G^-3 
8y3,N 
9Gi 

8y3,N 
9G2 

8y3,N

9G^ 
8y4,N 
9Ci 

8y4,N 
9G2 

8y4,N

pr1
9Ci
9uj

9G2
9lo _

8y3,N 
8y4,N 

8ua

-7^ 1
-Ci

L -g2 J

(68)

w —> w + 5m, (69)
Xj "^ Xj + ^¿Ji i=l<-- ,4; J = 1,""" , N (70)
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This completes an iteration that can be repeated up to when correc­
tions are small enough.

The way of solving for the modes and the eigenfrequency is similar to 
the method we employ for computing binary stellar evolution. In this case, 
the “non-local” quantity is the mass transfer rate, that is computed simul­
taneously with the structure of the donor star. For details see Benvenuto 
& De Vito (2003).

4.1. Approximate Solution: the Discriminant

In order to look for the approximate solutions of the equations we have 
to explore the frequency interval of interest. To do so, we relax one of 
the physical boundary conditions (not the normalisation condition!) and 
look for the solution of oscillation equations for a given frequency. If at 
a given frequency the boundary condition is fulfilled, it corresponds to an 
approximate eigenmode, otherwise not. So, we store in the memory of the 
computer the approximate frequency and modes to be improved iteratively, 
as described above.

4.2. On the Distribution of Mesh Points

One of the most difficult problems on finite difference solution of differential 
equations is how to choose the distribution of mesh points. Here we cannot 
present a detailed discussion of this issue but we shall give few general 
comments.

Usually it is considered that a good description of a function is attained 
if it is defined on a large number of mesh points. However, obviously, 
this cannot be very large because both, the memory and the speed of 
the computer are finite. For example, it can be assumed that a function is 
well represented if between neighbouring mesh points it does not vary more 
than (say) 1% of the maximum amplitude in all the interval. In general, the 
solution of the equations of oscillations will have several nodes. Evidently, 
these functions do need more mesh points to be well defined as compared 
with the zoning necessary for stellar evolution. Thus, in general a good 
zoning for stellar evolution calculations may be completely inadequate for 
pulsation calculations.

5. A Particular Case: Polytropic Spheres

Let us now apply the above described numerical scheme to a particular 
case. If the equation of state is of the form P = Kp1+1/n, where K is a 
constant, the structure of the object is a polytropic sphere. If we define 
p = pc9n and r = oÇ where pc is the central density, 9 is the polytropic 
function, and a2 = ^"¿^ pd™ \ we find the Lane-Emden equation
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Figure 1. The density profile for polytropic spheres of n = 3 
and 4.

1 d B 2d6\ 
êdlv

The boundary conditions are 9^ = 0) = 1, d^/d^l^o = 0 and the 
surface is defined by 6^ = £s) = 0. The radius of the sphere is R = a^s 
and its mass is given by M = 4ivo?p^—^dô!d£,\=^s.

All the results shown below have been computed with the codes pro­
vided during the school1, politro.for and NR_AD_School. f or. First you 
have to compile and execute politro.for. After choosing the polytropic 
index the code will provide a file with the structure coefficients necessary 
to compute the oscillations. NR_AD_School. f or will ask you for the value 
of f of the oscillations and the range of values of the square of the dimen­
sionless frequency u?. Automatically this code will store the discriminant 
and the modes in the required range.

’For interested readers, the codes can be obtained from the author upon request.

Compilations and executions are fairly standard:
> gfortran xxx.for -o xxx
> ./xxx

Analytical solutions of Equation (71) are known only for n=0, 1, and 
5. Let us here consider the cases of n = 3 and 4 and that the gas has 
an adiabatic coefficient Fi corresponding to the monoatomic case: Fi = 
5/3. For this case, the density profiles are shown in Figure (1) and the 
coefficients given by Equations (49) are shown in Figure (2).

Having available these coefficients, we can now compute the modes. 
The first step is to calculate the discriminant. In this case we have em­
ployed Equation (52) for such purpose. The results are shown in Figure (3).
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Figure 2. The coefficients given by Equations (45)-(48) that 
describe the structure of the polytropic spheres of n = 3 and 4.
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Figure 3. Discriminant for 1 = 2 modes for polytropic spheres 
of n = 3 and 4.

The modes correspond to the frequencies at which the discriminant is zero. 
Modes for both polytropic indices are shown in Figures (4)-(7).

Another interesting way to have a global view of the properties of the 
modes is to employ the so-called “Propagation Diagram” which is based on 
Equation (38). This is an useful tool for polytropes, but also for stellar 
models in general. The Propagation Diagrams for the cases of polytropic 
spheres of n = 3 and 4 are shown in Figure (8).

6. Conclusions

In this lecture we have presented the classical problem of low amplitude, 
adiabatic non-radial pulsations. We have derived the ecpiation of oscilla­
tions starting from first principles. The formulation is based on the Equa­
tions (41)-(44) and boundary conditions (50)-(53) written in the Dziem- 
bowski variables.

In order to solve the equations we have presented a finite differences 
scheme. In order to look for the modes we have relaxed one of the boundary 
conditions and considered the values of this condition as a discriminant. 
When it has the physical value, this frequency corresponds to an oscillation
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Figure 4. The first p-modes and the f-mode (without nodes)
for a n = 3 polytropic sphere

mode. Then, we imposed the correct boundary condition and computed 
the eigenmodes and eigenfrequencies by relaxation.

Although here we have restricted ourselves to the case of adiabatic 
oscillations, the numerical scheme can be immediately generalised to the 
case of non-adiabatic oscillations. In this case we have to handle not four 
real but six complex first order differential equations.

In order to compute the modes of a simple stellar model, we applied it 
to the case of polytropic spheres with indices n=3 and 4. This is straight­
forward and is the first step we recommend to do before trying to compute 
the oscillatory modes of realistic stellar models. Of course, the numerical 
scheme is adequate for such a purpose if you are able to provide the co­
efficients given by Equations (45)-(48). In the case of realistic models a 
point to be taken with care is that the derivative of the density has to be 
computed numerically since it is not provided by the equations of stellar 
evolution.

The author wants to acknowledge the SOC of this School for inviting 
him to deliver these lectures.
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Figure 5. The first g-modes and the f-mode (without nodes) 
for a n = 3 polytropic sphere. Here the normalisation condition 
has been imposed at the centre of the model.

Figure 6. p-modes for a n = 4 polytropic sphere
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Figure 7. g-modes for a n = 4 polytropic sphere. Here the 
normalisation condition has been imposed at the centre of the 
model.
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Figure 8. The propagation diagrams for f = 2 oscillations for 
polytropic spheres of n = 3 and 4 (corresponding to the left and 
right panels respectively). The separes of the characteristic Lamb 
(Le, defined in Equation (33)) and Brunt-Vâisâlâ (N, defined in 
Equation (34)) frequencies are represented with dashed and dash 
dot lines respectively. Horizontal lines correspond to the frequen­
cies and filled dots represent the coordinates at which each mode 
has a node in the yi eigenfunction. For the case of n = 3 there are 
p-modes oscillating with nodes in the outer resonant cavity and 
g-modes oscillating in the inner one, separated by the so-called 
fundamental mode that has no node. On the contrary, for the 
case of n = 4 there also exist the two resonant cavities, but the 
p and g modes are not so clearly separated since there are modes 
with nodes in both cavities. These figures can be qualitatively 
understood in terms of the local analysis based on Equation (38).
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Abstract.
As an introduction to the subject basic properties of stellar pulsations 

are derived using simple intuitive estimates. With respect to a theoreti­
cal description of pulsating stars the physical principles governing stellar 
structure and dynamics are discussed. The associated equations are sim­
plified by the assumption of spherical symmetry thus providing the basis 
for the study of radial pulsations.
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1. Preliminary Considerations

Variability of stars, observed either by photometric or spectral methods, can 
originate from various effects. It could be caused by eclipses in binaries, by disks 
in cataclysmic variables, by nuclear explosions in Novae and Supernovae, by star 
spots associated with magnetic fields, or by oscillations of the star around its 
equilibrium, i.e., by stellar pulsations, which are the subject of the current series 
of lectures. In order to distinguish them from other sources of variability we 
define them in a first attempt as an intrinsic property of a single, isolated star 
exhibiting (possibly multiple) periodic variability of its effective temperature, 
radius and luminosity.

Pulsating stars are of fundamental importance for astrophysics, since the 
properties of the pulsations allow for reliable estimates of stellar parameters, 
and certain classes of pulsating stars (e.g., Cepheids) can be used for distance 
determinations. In asteroseismology direct information on stellar structure and 
interiors is obtained from the spectrum of observed oscillation frequencies. His­
torically, the hypothesis, that stellar pulsations or oscillations may be responsible 
for observed stellar variability was first raised by Shapley in 1914 and consid­
ered theoretically by Eddington in 1918 (see Cox, 1980). For further reading we 
recommend the article by Ledoux & Walraven (1958) and the textbooks by Cox 
(1980) and Unno et al. (1989).

In order to identify the stellar parameters governing the observed timescale 
of pulsation-induced variability we consider the various timescales occurring in 
stellar physics.
The mechanical or dynamical timescale is determined by the acceleration of a 
mass element under the action of gravity. Denoting the radial position of a

64
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mass element with r, the time with t, the mass of the star with M, and the 
gravitational constant with G, we estimate the acceleration as

d2r GM
dt2 r2

Using the stellar radius R as an estimate for r and the dynamical timescale Toyn 
as an estimate for t we are left with

R GM
t2 Id2"TDyn n

Solving for Toyn we obtain

TDyn 0< ^Gp^2 (3)

where p denotes the mean density of the star. Thus the dynamical timescale of a 
star is entirely determined by its mean density and varies between milliseconds 
for compact neutron stars and some 100 days for giants.

The thermal (Kelvin - Helmholtz) timescale tkh of a star may be defined 
by the time needed to radiate its thermal energy content Ethermal at its current 
luminosity L:

trh o<
Ethermal

L
(4)

Due to the virial theorem the thermal and gravitational potential energy EQrav 

of a star are of the same order of magnitude (,Ethermai « Ecrav « ^jy-) and we 
obtain

GM2 (M/M^2
TKH"^R" 10 yeaT\LlLQWR^

Enuc M iQ MjMp)
—-— oc — oc 1U years —

jL jL jL j L/q

Comparing the nuclear, thermal and mechanical timescales of a star with 
the observed timescale of stellar pulsations of at most a few hundred days we 
conclude that the mechanical timescale is relevant for stellar pulsations. More­
over, the physics governing pulsations should be dominated by the mechanics of 
the system. The pulsation - induced variability of stellar parameters is usually 
small compared to their mean time independent values. Thus pulsations may be 
regarded as oscillations around the mechanical (hydrostatic) equilibrium, where 
the perturbed equilibrium is readjusted on the dynamical timescale.

Oscillations require a restoring force. In a star, two types of restoring forces 
are available: Stellar matter is compressible and the perturbation of the density 
of a mass element will be associated with a perturbation of its pressure implying

(5)

Similar to the thermal timescale the nuclear timescale Tmtc of a star may 
be defined by the time needed to radiate its nuclear energy content Enuc at its 
current luminosity L. Since the nuclear energy content of a star is proportional 
to its mass we are left with

(6)
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forces which counteract the density perturbation and tend to restore the un­
perturbed configuration. In a continuous medium this restoring force gives rise 
to the existence of sound waves. Since pressure is the restoring force, standing 
sound waves in a star are denoted as p - modes. Buoyancy is the origin of a 
second restoring force. For its action it requires a non vanishing acceleration 
(the gravity g in a star) and a finite density gradient ^. An aspherical displace­
ment of a mass element will then induce a restoring buoyancy force proportional 
to the gravity and the density gradient (oc g • ^Y In a continuous medium it 
leads to the existence of gravity waves. Since gravity is an essential ingredient 
in buoyancy, standing gravity waves in a star are denoted as g - modes.

With respect to the geometry we distinguish radial from nonradial pulsa­
tions. For radial pulsations the perturbations preserve the spherical geometry 
of the hydrostatic star, whereas nonradial pulsations allow for non - spherically 
deformed perturbations. Since buoyancy cannot act in spherical geometry, radial 
g - modes do not exist and radial pulsations do consist of p - modes only. For 
the same reason pure gravity modes - should they exist - have to be nonradial. 
Nonradial pulsations contain both g - and p - modes, where the strict classifica­
tion of a given mode as g - or p - mode is not always meaningful, since there are 
modes with a mixed character, where both restoring forces act simultaneously.

On the basis of the hypothesis that stellar pulsations may be regarded as 
standing waves in a star we would like to provide a simple intuitive estimate of 
their pulsation periods, restricting ourselves to considering radial acoustic p - 
modes. As a guidance the analogue of an organ pipe as an acoustic resonator 
turns out to be helpful. The acoustic frequency spectrum of an organ pipe is 
obtained by considering the wavelengths A of standing waves which a pipe with 
length L and rigid boundaries at the top and at the bottom (corresponding to 
nodes of standing acoustic waves) allows for. If n — 1 denotes the number of 
nodes within the pipe of the standing sound wave, A/2 can take the infinite 
number of discrete values L/n. Assuming now that a star can be regarded as 
an acoustic resonator similar to an organ pipe with nodes of standing waves at 
the center (r = 0) and the surface (r = R/ we identify the length L of the organ 
pipe with the stellar radius R and obtain from A oc L/n by analogy as an order 
of magnitude estimate for the wavelengths of standing sound waves in a star 
A oc R/n. Wavelengths and associated frequencies v are in both cases related by

^A — Cgound

where the sound speed C5Oimf/ is given by

C2 Sound = 77/7 « P¡ P

(7)

(8)
p, p and 7 denote pressure, density and the adiabatic exponent, respectively. 
Thus the spectrum of acoustic frequencies of an organ pipe is estimated as

V — cSound / A OX 71

For the (radial) acoustic spectrum of a star we obtain the estimate

— cSound / A OX 71

(9)

(10)
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For a star, the ratio p/p can be estimated from the condition of hydrostatic 
equilibrium:

1 dp GM.r
p Qr r2 (ID

where MT denotes the mass within a sphere of radius r. Using ^ as an estimate 
for |^, M as an estimate for Mr and R as an estimate for r we obtain

1 p GM 
"pR^^

Thus the ratio pjp is given by

p GM 
- « ——

(12)

(13)

and the radial acoustic spectrum of a star (see equation 10) is estimated as

(14)

Replacing the frequency by the pulsation period II = l/i/ we obtain for the radial 
fundamental mode (n = 1):

II yp = constant (15)

Equation 15 represents the period - density - relation for the radial fun­
damental mode of stellar pulsations. Note that according to our estimates the 
density occurring in equation 15 has to be regarded as the mean density of the 
star. A familiar form of the period - density - relation (see, e.g., Cox, 1980) 
reads:

n(p/p0)1/2 = Q with 0.03d < Q < 0.12d (16)

The variation of Q is caused by the influence on the pulsation period of 
different stellar structures, which was not accounted for by our simple estimates. 
Note that the period - density relation is consistent with our initial findings that 
the timescale of pulsations is given by the dynamical timescale (equation 3).

2. Physics of Stellar Structure and Dynamics

For continuous systems like stars two kinds of descriptions are common. In the 
Eulerian framework fixed positions in space are considered, position vectors r 
and time t are used as independent variables. Accordingly, the Eulerian time 
derivative ^|r is defined at constant position vector r. In the Lagrangean frame­
work fixed mass elements are considered, the initial position vector tq of a mass 
element and the time t are used as independent variables. Accordingly, the La­
grangean time derivative ^¡.^ is defined at constant initial position vector r¡j of 
the mass element considered. Note that in the Lagrangean description the actual
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position vector f = í^í'q,#) is a (time dependent) dependent variable. For the 
definition of the velocity v the Lagrangean description is adopted:

Using the relation

Tt = It + <wl |18)

between the Lagrangean and the Eulerian time derivatives the acceleration 
can be written as

dv dv
dí=8i + (19)

Depending on which of the equivalent descriptions is more convenient for 
the particular situation studied, either the Eulerian or the Lagrangean approach 
(or even a combination of them) is used.

The physical principles governing stellar structure and dynamics comprise 
the conservation laws for mass, momentum and energy together with Poisson’s 
equation for the gravity and a prescription for the energy transport. In its 
differential form mass conservation is described by the continuity equation

^ + pVF = 0 (20)

Alternatively, the continuity equation in the Eulerian approach may be written 
as

|| + V(H = O (21)

By definition, an incompressible motion is characterized by a vanishing La­
grangean time derivative of the density (^ = 0). According to equation 20 
this condition is equivalent to Vv = 0, i.e., to a vanishing divergence of the 
velocity field. Incompressibility and homogeneity, which would correspond to a 
vanishing gradient of the density (Vp = 0), must not be confused.

In the absence of viscosity and magnetic fields, momentum conservation is 
described by Euler’s equation:

= P& + (^V)F) = -Vp - pW (22)
Ct t D V

The left hand side of equation 22 describes the inertial forces in either the La­
grangean or the Eulerian framework, the first term on the right hand side corre­
sponds to forces induced by pressure gradients, the second refers to the gravita­
tional force where 0 is the gravitational potential. It is determined by Poisson’s 
equation:

A <y = d-Gp (23)

The solution of Poisson’s equation 23 may be represented as:
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«i)-c(^A (24)

Based on the first law of thermodynamics energy conservation may be ex­
pressed as

du -
p— = —pVu + pE — VF (25)

where u, F and e denote the specific internal energy, the heat flux and the 
specific energy generation rate, respectively. The variation with time of the 
internal energy of a mass element is given by the mechanical work done by the 
element (first term on the r.h.s. of equation 25), the (nuclear) energy generation 
within the element (second term) and the heat deposited in it, expressed in terms 
of the divergence of the heat flux (third term). With V = l/p, the continuity 
equation 20 and some basic thermodynamics two terms of equation 25 may be 
rearranged to yield:

du ,du dV x ds
P^^P-P^+V^-pT^ (26)

where T and s denote temperature and specific entropy, respectively. Thus an 
alternative form of energy conservation (equation 25) is given by

dspT- =Pe-W (27)

In stellar interiors energy transport is usually approximated by a diffusion 
type process, where the heat flux is proportional and opposite to the temperature 
gradient:

F = -DVT (28)
The particular transport process enters through the diffusion coefficient D. 

In the optically thick regime (e.g., in stellar interiors) radiation transport can be 
treated in the diffusion approximation with D given by:

„ 4ac »D =---- T3
3kp

(29)

where a, c and k are the radiation constant, the speed of light and the Rosseland 
mean of the opacity, respectively.

If nuclear processes are of interest, the system of equations has to be com­
plemented by the variation with time of the chemical composition ^Xt denotes 
the mass fraction of nucleus i) induced by nuclear reactions:

dX; 
dt

dX, , T
-^.p.-n (30)

The specific dependence on chemical composition, pressure and temperature of 
the reaction rate entering equation 30 is provided by nuclear physics.

A closure of the system of equations given above is accomplished by the 
prescription of a thermal and a caloric equation of state (EOS) provided by
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thermodynamics and atomic physics. Depending on the thermodynamic basis 
adopted it may formally be written as, e.g.,

p = p(p, T) or p = p{p,T) or s = s{p,T) (31)

Moreover, the Rosseland mean of the opacity k = k(p, TJ and the nuclear energy 
generation rate e = e(p, TJ have to be provided by atomic and nuclear physics 
either in parametrized or in tabular form.

The problem posed by the system of equations introduced here consists 
of their application to stellar structure and dynamics and their mathematical 
solution. Concerning the latter, a numerical treatment of the equations with 
subsequent numerical simulations seems to be an appropriate strategy. However, 
concerning stellar pulsations reliable nonlinear 3D simulations satisfying the nec­
essary accuracy requirements are still not yet feasible. Therefore the theoretical 
study of stellar pulsations still relies on simplifications and approximations.

3. Radial Pulsations

As an attempt to reduce the mathematical complexity of the problem we sim­
plify its geometry by assuming spherical symmetry, i.e., we restrict our studies 
to radial pulsations. However, according to the preliminary considerations in 
section 1 this assumption does not only simplify the mathematics, it also leads 
to a loss of physical effects, such as buoyancy. As a consequence, e.g., g - modes 
are excluded in this approach. Therefore the interpretation and generalisation of 
results based on a radial analysis has to be dealt with caution. For convenience, 
we introduce spherical polar coordinates (r, 9, ^ and adopt the Lagrangean de­
scription. Then the mass Mr contained within a sphere of radius r is given by 
(subscripts 0 refer to initial quantities in the Lagrangean sense):

/-'"('W) fro
Mr = p(r', í)4ttr' dr' = p^rg^Tvrg drg = Mro (32)

Jo Jo '
With this definition the conservation of mass is expressed as

Mr = Mro ; ^=0 (33)

and Mr = Mro is chosen as a new Lagrangean variable replacing rg. Thus Mr 
(and tj have become independent Lagrangean variables, whereas r(ALr,t) is a 
dependent variable. The relation between r and Mr is obtained by differentiation 
of the definition of MT (equation 32):

9MT /i 2 dr 1—-— = 4-nr p or , = -—— 34
dr dMr 4-Kr^p

Note that in equation 34 the derivatives have to be interpreted in the Lagrangean 
sense. In spherical symmetry the gravitational force occurs in Euler’s equation 
22 in terms of the gradient of the potential J). It is determined by Poisson’s 
equation 23 which in spherical symmetry is given by:
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d"2^ 2 d<[) 
dr2 r dr

^9, 2¿N _ . r 
r2 gr (7 gr ) ivGp (35)

By multiplication of equation 35 with r2 and integration we obtain:

2 = / 4ivGpr2dr = GMr 
dr I ’ (36)

For the gravity we are thus left with

d<j) _ GMr 
^^^ ^2 (37)

Note that the particular choice of the Lagrangean variables allows for an algebraic 
representation of the gravitational force. No further integration is required.

To present the equations governing radial pulsations in their conventional 
form, some transformations and definitions have to be introduced: The radial 
component Fr of the heat flux is replaced by the luminosity LIP) through

L^ = 4"r2 Fr (38)
Choosing pressure p and temperature T as the thermodynamic basis we write 
the differential of the specific entropy s = s(p, T) as

Tds = cpdT---- dp (39)

where cp denotes the specific heat at constant pressure and the coefficients a and 
5 of the differential form of the equation of state p = p(p, T) are defined as

¿Hog p
dlogp T

¿Hog p 
¿HogT (40)

The transformation from r to Mr as an independent variable is accomplished by 
using equation 34 in the form

(42)

(43)

(44)

<9 . 2 9---- = 4tT7'2/9-------- 
dr ' DM,

We are thus left with the following system of equations describing the spherically 
symmetric structure and dynamics of a star (^ refers to the Lagrangean time 
derivative): 
Mass conservation .

dr 1
dMT 4Tvr2p

Momentum conservation

dp GMt 1 d2r
dMr 4tt7'4 4tt7'2 dt2

Energy conservation 
" dL _ c dT 5 dp

dMr E Cp dt p dt
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Energy transport
QT — (45)

9Mr - ~647r2acr4T3 ( J

Change of chemical composition by nuclear processes

av av
|46)

This system of five partial differential equations needs to be closed by the pre­
scription of an equation of state and by specifying the nuclear energy generation 
rate e and the opacity k. We note that energy transport processes other than ra­
diation diffusion are not taken into account in equation 45. In particular, energy 
transport by convection is disregarded.

Three terms involving a time derivative occur in equations 42 — 46, each 
of them being related to one of the characteristic stellar timescales discussed in 
section 1: The acceleration term in equation 43 is associated with the dynamical 
timescale, the time derivative of the entropy in equation 44 (expressed by the 
time derivatives of temperature and pressure, respectively) with the thermal 
timescale and the time derivatives of the mass fractions in equation 46 with the 
nuclear timescale.

Stellar evolution relies on hydrostatic equilibrium (|^ = 0) and is governed 
by the nuclear and the thermal timescales. Thus the description of standard 
stellar evolution is included in equations 42 — 46 as the special case of vanishing 
acceleration.

On the other hand, the study of pulsations requires deviations from hydro­
static equilibrium (^ ^ 0), whereas on the timescale of pulsations the nuclear 
changes of the chemical composition may be ignored. Thus nuclear processes, i.e., 
equations 46 are usually ignored and the chemical composition in terms of the 
mass fractions Xi is assumed to be constant on the dynamical timescale of pul­
sations. Thus pulsations are governed by the dynamical and thermal timescales. 
Under certain conditions for pulsations even the change of the entropy (i.e., its 
time derivative in equation 44) may be neglected. Then the energy equations 
can be disregarded altogether and we are left with a mechanical system, where 
pulsations are completely determined by the dynamical timescale.

Acknowledgments. I would like to thank the organisers of the VIII LAPIS 
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Abstract.
We discuss the general strategy of the theoretical description of stel­

lar stability and pulsations. The initial construction of a spherically sym­
metric stellar model in hydrostatic equilibrium is followed by considering 
small perturbations around the equilibrium. Both for radial and nonradial 
disturbances the linear equations governing these small perturbations are 
derived. The influence of the thermal and the dynamical timescale on the 
properties of linear pulsations is discussed in detail. For unstable stellar 
models the last step of the general approach consists of following the evo­
lution of an instability into the nonlinear regime by numerical simulation.
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1. General Strategy

In the present paper, we will adopt the same notation as in the previous lecture in 
this volume on “Theoretical Description and Basic Physics of Stellar Pulsations” 
(hereafter referred to as paper I). Moreover, we shall make use of the results 
obtained there.

Most of the pulsating stars maintain their mean properties (such as lumi­
nosities and effective temperatures) while pulsating. Moreover, the pulsational 
variability of the stellar parameters is in general small compared to their station­
ary mean values. Thus pulsations may be regarded as “small” time dependent 
perturbations superimposed on a stationary star in hydrostatic equilibrium. For 
a theoretical treatment these findings suggest to start with a hydrostatic stellar 
model subsequently considering time dependent perturbations of the equilibrium, 
which are small compared to the equilibrium values. As a consequence, in an 
expansion around the equilibrium only terms linear in the perturbations will be 
significant while higher order terms in the perturbations can be neglected. Thus 
the approach will lead to a system of linear equations for the perturbations.

The construction of a (spherical) hydrostatic stellar model as the first step 
of the analysis can be accomplished by standard stellar evolution calculations 
leading to models with the desired (or observed) parameters. Alternatively, 
for prescribed (observed) stellar parameters hydrostatic envelope models can be 
calculated by integration of the equation of mass conservation (see equation 42 
of paper I):
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dr
dMr Mur^p (1)

the equation of hydrostatic equilibrium (the equation of momentum conservation 
with vanishing acceleration, see equation 43 of paper I):

dp _ GMr
dMr 4tt7'4

and the equation of energy transport (see equation 45 of paper I):

dT 3k.L
dMr ÇAi^acr4!^

(2)

(3)

For prescribed chemical composition, luminosity L, effective temperature Tejj 
and mass M the integration of equations 1 — 3 can be performed as an initial 
value problem starting at the photosphere. Initial values for r and p are obtained 
from Stefan - Boltzmann’s law and an estimate for the photospheric pressure, 
respectively (see, e.g. Kippenhahn & Weigert, 1990). In case of energy transport 
by convection equation 3 needs to be modified. In a stellar envelope nuclear 
processes do not occur (e = 0). As a consequence, the chemical composition 
is constant and integration of the stationary form of the equation of energy 
conservation (see equation 44 of paper I) shows the luminosity to be constant 
there. We are thus left with the three ordinary differential equations 1 — 3 
posing an initial value problem.

Assuming that a hydrostatic stellar model has been constructed either by 
stellar evolution calculations or by envelope integrations in the way discussed 
above, any physical variable Q, where Q stands for, e.g., pressure, temperature 
and density, will be known for this model as a function of Mr. Hereafter, quan­
tities referring to time independent hydrostatic models will be indicated by the 
subscript 0, i.e., for further studies we can assume the physical variables Qo(Mr') 
of a hydrostatic model to be given. Considering spherically symmetric time de­
pendent perturbations around the hydrostatic equilibrium we may decompose a 
variable Q(Mr,t^ in the following way:

Q(Mr,t) =Q0(Mr) + Ql(Mr,t) (4)

where the perturbation Qi (like Q) depends on both MT and t. In the next 
step, the decomposition 4 is inserted in the system of equations describing the 
spherically symmetric structure and dynamics of a star (equations 42 — 45 of 
paper I) to obtain a system of equations for the perturbations Qi. In accordance 
with the general strategy we shall assume in this procedure that Qo satisfies 
equations 42 — 45 of paper I separately and that the perturbations Qi are 
“small” compared to their hydrostatic counterparts Qq:

Qi
Qo

Thus terms of higher order than linear in the perturbations can be neglected 
and we are left with a system of linear equations for the perturbations Qi. As
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a consequence of the linearisation of the problem achieved in this way the solu­
tions of the linear differential equations may be superposed and multiplied by 
an arbitrary complex constant to yield further solutions of the system. Thus the 
amplitude of the perturbations remains a free parameter and cannot be deter­
mined in the linear approach. If pulsation amplitudes are to be determined, a 
nonlinear treatment of the problem is inevitable.

Should a stellar model turn out to be unstable according to the linear treat­
ment its final fate might be determined - as a last step of the general strategy - 
by following the evolution of the instability into the nonlinear regime by numer­
ical simulation of the complete set of nonlinear equations (equations 42 — 45 of 
paper I). This approach would then also allow for a determination of pulsation 
amplitudes, if finite amplitude pulsations are the result of a stellar instability.

2. Linear Radial Stability and Pulsations

In this section the equations governing “small” spherically symmetric perturba­
tions of a star in hydrostatic equilibrium will be discussed. The analysis and nota­
tion closely follows the paper by Baker & Kippenhahn (1962), see also Gautschy 
& Glatzel (1990). Adopting the general strategy described in section 1 a hydro­
static model is assumed to be provided in terms of the physical variables Qo(MrY 
The variables Q are decomposed according to equation 4 and inserted into equa­
tions 42 — 45 of paper I. Assuming ^ C 1 all terms are expanded around Qo 
retaining only stationary terms and expressions linear in the perturbations. For 
illustration, the linearisation of the expression ^ (r is a dependent variable) and 
the equation of state p = p(p, T) is performed explicitly:

1 1 1 , , x 1 n
=---------------------------9 = —9(1 — 27’1/7’0) = —9 — 2—0

7'2 7'02(l +7'i/7'o) nr 7'02 7'03

P = Pg + /+ = P^P^ = P^Po +P1,TO + 71)

= ^0,70)+^ Ki+|^ | F+Oip/.T,2)
WP 0 \

/ dp \ .
= pg + pi/po +log P Q

Hence

/aiogp \ / aiogp
ydlogp T)o ydlogT

p)g (7)
() Wo
^SlogT p)q

j 7i/7o = «oPi/Po — ^oTi/Tq (8)
V 0

Taking into account that the variables Qo satisfy the time independent version 
of equations 42 — 45 of paper I separately the linearisation process finally yields 
the following system of equations:
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Mass conservation

9ri 2 1 t / AT /T 1
= “1------- 3?'i - 1---- ^(«oPi/Po - W/To)

OMr d/Tpo/'O 4tT7'o^Po
(9)

Momentum conservation

dpi _ GMr 1 92n 
dMr 4tt7'o5 1 4tt7'q2 dt2

Energy conservation

<9^1 dTi 50dpi
8Mr ^ ^+ m ã7 ^TPi/po + etoT/Tc) (11)

Energy transport

S = to SVo (lt^0 ~4ri/r° + 'W1/m ~(3 ~ ,e™m/T")

(12)
where Vo, ep, Et, hp and k-t are defined as:

9 log To

o diogpo 
8M,.

d log E d log E
"'p dlogp T ' 1 dlogT

d log K d log K

p

dlogp T 1 1,11 dlogT
p

(13)

(14)

(15)

On the timescale of pulsations the change of chemical composition by nuclear 
processes can be ignored (see section 46 of paper I). Therefore equation 46 of 
paper I has been disregarded in deriving equations 9 — 12. Equation 12 is not 
only valid for energy transport by radiation diffusion. In the form given, it is also 
valid, if energy transport is partially provided by convection and if the coupling 
between convection and pulsation can be treated according to the “frozen - in 
approximation” (see, e.g., Baker & Kippenhahn, 1965). The latter consists of 
assuming the convective flux to be constant during pulsations, i.e., the pertur­
bation of the convective flux is required to vanish. It is applied, if convection 
contributes a minor fraction to the entire energy transport, and holds, if the 
turnover timescale of convection is much larger than the pulsation timescale. In 
the presence of convection Lorad refers to the energy transported by radiation 
diffusion, whereas Lq corresponds to the total flux consisting of both the radia­
tive and the convective flux. (In the absence of convection we have LQrad = Lq.) 
Within the “frozen - in approximation” the consideration of convection implies 
the coefficient LL°ad > 1 of Li/Lq in equation 12.

For the numerical treatment of equations 9 — 12 we introduce relative per­
turbations Qi/Qo by
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C = n/r0 ; t = Ti/T0 ; P = Pi/po ; Z = L1/L0 (16)

For improvement of the numerical resolution in the outer stellar envelope we 
change the independent variable from Mr to logpo by the transformation pro­
vided by the equation of hydrostatic equilibrium:

9p0 = _ GAL
0Mr 4tt7'o4

9 GMt d
dM.r 4ttpo7'o4 9 log po

Hereafter, the derivative with respect to logpo will be denoted with '. Times will 
be measured in units of the dynamical timescale, i.e., we introduce a dimension­
less time t by:

t = ty/AnGp (19)

where p is the mean density of the star. We thus arrive at a system of dimen­
sionless differential equations appropriate for a LNA analysis, i.e., a numerical 
analysis of radial linear nonadiabatic stellar stability and pulsations (see also 
Baker & Kippenhahn, 1962):
Mass conservation

(' = c4(3£ + ap — ¿t) (20)

Momentum conservation

d2d p' = -p - 4( + c3 —-2
OT

(21)

(22)

Energy conservation
1 dt dp

Vad Or Qt

Energy transport

t' = V0 ( TAM1 ~ 4< + VP - (4 - «t)í ) 
Wo /

(23)

In equations 20 — 23 the dependent variables ^,p,l and t depend on logpo (°r 
MV and t, whereas their coefficients are completely determined by the hydro­
static model, i.e., they depend on logpo (or MV only. Since the risk of confusion 
is small, subscripts 0 at the coefficients have been omitted and will be omitted 
hereafter. As the influence on stellar pulsations of nuclear processes is expected 
to be extremely small (see section 3 of paper I) terms associated with the nuclear 
energy generation rate e have been disregarded in equation 22. The coefficient 
Vad occurring in equation 22 and defined as

_ ¿HogT
V ad — i u log p

(24)
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is without any reference to a particular stellar model completely determined by 
the equation of state as the logarithmic derivative of temperature with respect to 
pressure at constant entropy (hence the subscript “adiabatic”). The dimensionless 
coefficients c¿ are obtained as

Cl =

4tt7'o3p 
C3 = ----------

PO^O q / 2 . v nc4 = 7777— oc l/7'o jor r0 —> 0 LrMrpQ

47T7'o4Po2¿O /47rp
-M^r\l—K1'r” for tq —> 0

(25)

(26)

(27)

Except for ci which will be discussed in detail later all coefficients in equations 
20 — 23 are of order unity. For 7'0 -> 0 q and c4 diverge like ex l/?’o2 (since 
Mt ex 7'o3 and Lq ex ?’o3 for 7'0 —> 0).

Since the coefficients of the linear partial differential system 20 — 23 do not 
depend on time it can be transformed into an ordinary differential system by 
separating the time dependence of the dependent variables Q according to

Q(logp0,T) = Q(logp0)exp(-io-r) (28)

where the complex constant c = cr + iot denotes the dimensionless complex 
eigenfrequency or eigenvalue. Thus time derivatives in equations 20 — 23 reduce 
to a multiplication with ¿o’ (^ —> io and ^ —> —c2) and the time dependence 
in terms of the common coefficient exp(icTT) is eliminated from equations 20 — 
23 leaving an ordinary differential system for the dependent variables Q with a 
as a free parameter and logpo as the independent variable. In the following we 
shall consider only the time independent parts Q of the dependent variables and 
omit superscript s ' for simplicity. Rewriting the time dependence of Q as

Q = Qexp(i<jrT — aiT^ = Q exp(—77,7) (cos(<Trr) + i sin(<7rr)) (29)

we observe that a finite real part of the eigenfrequency implies an oscillation with 
frequency ar, whereas a finite imaginary part is associated with exponential decay 
(for <Ji > 0) or exponential growth (for di < 0) of a perturbation. Thus positive 
imaginary parts of the eigenfrequency indicate stability, negative imaginary parts 
correspond to an instability of the star.

The solution of equations 20 — 23, now regarded as a forth order ordinary 
differential system with c as a free parameter, requires the specification of four 
boundary conditions. At the photosphere (7'0 = R) being the outer boundary of 
the stellar models Stefan - Boltzmann’s law

L = dsBR2T4ejj (30)

holds by definition ^ctsb is Stefan - Boltzmann’s constant). Its linearised form 
in terms of the dependent variables of equations 20 — 23 is obtained as

I = 2£ + 4t for ro = R (31)
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A second boundary condition at tq = R might be given by the requirement of a 
force - free outer boundary implying the pressure perturbation to vanish there:

p = 0 for 7'0 = R (32)

The photosphere is the boundary of the stellar model, but not the physical 
outer boundary of the star. As a consequence, there is a variety of physically 
reasonable requirements which might be imposed as boundary conditions at tq = 
R. In particular the condition 32 is a matter of debate, since the pressure at 
the photosphere is finite. Thus the outer boundary conditions at tq = R are 
ambiguous and the influence of their choice on the results of the LNA analysis 
needs to be studied.

For complete stellar models the inner boundary corresponds to the center 
of the star (7'0 = 0). Rewriting the equations 20 and 22 of mass and energy 
conservation as

1
c4

(33)

(34)

we deduce from equations 33 and 34 that the coefficients of the derivatives vanish 
at the inner boundary tq = 0, since according to equations 26 and 27 ^ oc tq2 
and 4- rx ?’o2 holds for tq —> 0. Thus tq = 0 is a singular point of the differential 
system enabling diverging solutions for tq —> 0. For the physical interpretation 
regular solutions are needed, i.e., contributions from singular solutions have to be 
excluded by appropriate boundary conditions. If (, p, I, t and their derivatives 
are required to remain finite at ro = 0, the l.h.s. of equations 33 and 34 vanishes 
there. As a consequence, also the r.h.s. of equations 33 and 34 has to vanish at 
7'o = 0 implying two boundary conditions for the differential system 20 — 23 at 
7'o = 0:

3Ç + ap — 5t = 0 ; tq = 0 (35)

t - Vadp = 0 ; 7'0 = 0 (36)

7'o = 0 is a regular singular point of the differential system 20 — 23 providing 
the boundary conditions 35 and 36, if the solutions of the system (for physical 
reasons) are required to remain regular. We emphasize that (in contrast to the 
outer boundary) these boundary conditions are unambiguous. Any other choice 
will induce singular contributions to the solutions.

The fourth order differential system 20 — 23 together with the two boundary 
conditions 31 and 32 at ro = R, the two boundary conditions 35 and 36 at 
7'o = 0 and the free complex parameter a poses a boundary value problem. In 
contrast to initial value problems boundary value problems in general do not 
have a solution. However, an adjustment of the free parameter a such that 
a solution of the differential equations matches all boundary conditions may be 
used to generate a solution of the complete system (differential equations together
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with the boundary conditions). Thus the strategy consists of identifying and 
determining those values of a which allow for a solution of the boundary value 
problem. (For stellar pulsations there is an infinite number of discrete values 
of a satisfying this requirement.) According to its mathematical character the 
problem discussed is also addressed as boundary eigenvalue problem with ct being 
the eigenvalue or eigenfrequency.

3. Local Definition of Dynamical and Thermal Timescales

The global dynamical and thermal timescales of a star have been introduced in 
section 1 of paper I. Here we are interested, whether and how these timescales 
may be defined in a local way, i.e., not for the entire star but for a thin mass shell 
within a star extending between the radii t and t + A?'. The global dynamical 
timescale may be estimated as the time needed by a sound wave to cross the entire 
star. Accordingly, its local analogon is the time needed by a sound wave to cross 
a mass shell with thickness A?'. Estimating the sound speed as <? sound. <xp/p it 
is given by:

TDyn « kr^/pjp (37)

Similar to the global thermal timescale, the local thermal timescale of a mass shell 
with mass Am is defined as the time needed to radiate its thermal energy content 
at the local luminosity, where the thermal energy content might be expressed 
as the product of the specific heat cp, the temperature T and the mass Am- 
Rewriting the latter in terms of the density p and the volume of the mass shell 
we finally obtain for the local thermal timescale:

_ CpTAm CpTpiirr2 Z\r
^Thermal — = — (38)

Both the local dynamical and the local thermal timescale depend on the thickness 
A?' of the mass shell considered. Unless there are further arguments how to 
choose A?', they can be given any value since the choice of A?' is ambiguous. 
Thus the local dynamical and thermal timescales given by equations 37 and 38 
are ill-defined quantities without any physical relevance. However, their ratio 
being independent of A?' is well defined and given by:

''"Thermal

TD-yn

^r^pCpT 
L VpFp (39)

For any stellar model the ratio of the local thermal and dynamical timescale 
increases from values of the order of unity (or even below) at the photosphere to 
the stellar center by many orders of magnitude. As an example it is shown as a 
function of relative radius t ¡R in Figure 1 for two stellar models having different 
masses but the same luminosity L = 7.25 x 105Aq and effective temperature 
Teff = 18600A. '
For TThermai / TDyn ^ 1 the time for a mass element needed to exchange heat 
with its surroundings significantly is much longer than any dynamical event such 
as, e.g., a sound wave passing the element. As a consequence, the heat content 
of the mass element may be considered to be constant in this situation, i.e., the
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Figure 1. The ratio of the local thermal and dynamical timescale as 
a function of relative radius r/R for two stellar models with the masses 
indicated having the same luminosity L = 7.25 x 105Lq and effective 
temperature Teff = 18600K.
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changes of state of the mass element occur at constant entropy and are adiabatic. 
Together with an equation of state this condition implies an algebraic relation 
between temperature and pressure and leads to the following linear equation for 
the relative perturbations of temperature and pressure:

t ~ ^adP = 0 (40)

From Figure 1 we conclude that the condition 40 of adiabatic changes of state 
is highly satisfied in the deep interior of a star. For reasons of regularity (see 
equation 36) it holds even exactly at the very center (ro = 0). Thus at sufficiently 
deep layers within a star pulsations can be regarded to be adiabatic satisfying the 
relation 40. Nonadiabatic effects have to be taken into account close to the stellar 
surface, where the range in terms of the radial extent of significant deviations 
from adiabatic behaviour sensitively depends on the stellar model considered. 
For the model with M = 60Mo shown in Figure 1 it covers the outermost 
« 20 per cent of the stellar envelope, whereas the adiabatic relation is a poor 
approximation for the major fraction of the envelope of the M = 24M© model. 
Accordingly, studies on pulsations based on the adiabatic approximation 40 are 
expected to provide results comparable with those of the complete analysis, if 
the range of radii with TThermai/^Dyn < 1 is sufficiently small. For the M = 
24A/q model discussed the latter does not seem to hold and a fully nonadiabatic 
treatment will be necessary.

Comparing the ratio 39 of the local thermal and dynamical timescales with 
the definition 27 of the coefficient ci we deduce that except for a factor of order 
unity the expressions are identical, i.e., ci occurring in equation 22 as the coef­
ficient of the time derivative of the entropy perturbation is essentially given by 
the ratio of the local thermal and dynamical timescales and reaches extremely 
high values when the stellar center is approached (see Figure 1). A large value of 
ci (or rather the vanishing of 1/ci as the coefficient of V in a suitably rewritten 
form of equation 22) implies equation 22 to approach singularity with the result 
that the time derivative of the entropy perturbation should vanish. Separating 
the time dependence according to equation 28 we are left with the final con­
sequence that the expression ^^t — p is required to vanish when ci diverges. 
In this way large values of ci naturally lead to adiabatic changes of state and 
imply the adiabatic relation 40 to hold without the necessity to impose the condi­
tion of adiabatic changes of state additionally. Thus our physical considerations 
concerning the various timescales and their consequences for the properties of 
pulsations within a star completely agree with the mathematical analysis of the 
perturbation equations. Through the relation between the timescales and the co­
efficients of the perturbation equations the physical and mathematical approach 
implies the same predictions concerning the properties of stellar pulsations.

Motivated by the fact that for many stars the fraction of the envelope with 
^Thermal/^Dyn < 1 is negligible implying adiabatic changes of state for the major 
part of the star an approximate treatment of the perturbation problem 20 — 23 
consists of requiring the adiabatic relation 40 to be valid for the entire stellar 
model. As a consequence the mechanical and the thermal parts of equations 
20 — 23 are decoupled and we are left with the mechanical equations of mass 
and momentum, where the temperature perturbation is replaced by the pressure 
perturbation using the adiabatic relation 40:
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Mass conservation
(' = c4 (3C + (a - 6X7cici^ (41)

Momentum conservation
p' = -p - 4( - ct2c3( (42)

Thus the fourth order boundary eigenvalue problem is reduced to a second order 
problem where the (ambiguous) mechanical outer boundary condition 32 remains 
unchanged

p = 0 ; 7'o = R (43)
and the regularity condition at tq = 0 implied by c4 oc l/?'o2 for tq —> 0 can either 
be read off directly from equation 41 or is obtained by replacing the temperature 
perturbation in equation 35 using the adiabatic relation 40. It is given by

•X + (a - 6X7aalp = 0 ; r0 = 0 (44)
Equations 41 and 42 together with the boundary conditions 43 and 44 describe 
linear radial stellar stability and pulsations within the adiabatic approximation.

4. Linear Nonradial Stability and Pulsations

As discussed in section 1 we assume a spherically symmetric hydrostatic stellar 
model to be provided in terms of physical variables QXMrY Considering now 
nonspherical perturbations around the equilibrium it is more convenient to adopt 
an Eulerian description with the position vector r as an independent variable 
rather than the Lagrangean approach where for spherical symmetry Mr was used 
as independent variable. Accordingly we express the stationary physical variables 
in terms of the radial coordinate r as Qo(7')- Adopting spherical polar coordinates 
(r, 0, X any physical variable QYl 9, V^ i) is — similar to the procedure described 
in section 1 — decomposed as

QXX^RY = Qo^Y + Qi^G^t) (45)
where Qi denotes the Eulerian perturbation of Q. (Note that the decomposi­
tion 4 refers to the Lagrangean perturbation of Q.) The decomposition 45 is 
then inserted into the equations of mass conservation (equation 21 of paper I), 
momentum conservation (equation 22 of paper I) and energy conservation (equa­
tion 27 of paper I), the diffusion equation for energy transport (equations 28 and 
29 of paper I) and Poisson’s equation for the gravitational potential (equation 
23 of paper I). In accordance with the discussion in section 3 of paper I the 
variation with time of the chemical composition (see equation 30 of paper I) is 
ignored when considering pulsations. In contrast to radial pulsations, where an 
appropriate choice of Lagrangean variables together with an analytical integra­
tion supersedes the complete solution of Poisson’s equation, the latter needs to 
be considered explicitly in the case of nonradial perturbations. In accordance 
with the general strategy (see section 1) we assume the stationary variables Qo to 
satisfy the system of equations separately and the perturbations Qi to be “small” 
compared to their hydrostatic counterparts Qo, he., we have Qi/Qo ^ 1- Ne­
glecting terms of higher order than linear in the perturbations we thus arrive at a
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system of homogeneous linear partial differential equations for the perturbations 
Qi. " ~

We emphasize that perturbations of a physical variable Q defined either in 
the Eulerian or Lagrangean approach are different and must not be confused. 
Eulerian perturbations (in the following denoted with Q) refer to a fixed posi­
tion in space whereas Lagrangean perturbations (in the following denoted with 
AQ) refer to a fixed mass element. The Lagrangean perturbation of the position 
vector r (a dependent Lagrangean variable) for a fixed mass element (an inde­
pendent Lagrangean variable) is denoted as Lagrangean displacement Ar. For 
any physical variable Q the Lagrangean and Eulerian perturbations are related 
by:

AQ = Q + ArVQ0 (46)

Some authors use both Lagrangean and Eulerian perturbations and variables 
simultaneously. Therefore it seems useful to note some commutation rules:

YQ = VQ (47)

+ vVQo dt dt (48)

v = —Ar + (rloV)Ar — (ArV)tl6 (49)
9t

The system of linear partial differential equations for the perturbations Qi 
contains the derivatives yg and ^b only in the combination

d2 Id2 n 9
992 sin2# 9<p2 99

Spherical harmonics Yim(9,ip^ with integer harmonic indices I = 0,1,2,... and
m = —I,..., I are eigenfunctions of the operator L2 with eigenvalues Z(Z + 1):

L2Vlm = Z(Z + l)K/m (51)
They provide a complete orthonormal system in terms of the variables 9 and 
ip which suggests an expansion of the perturbations Qi in terms of spherical 
harmonics:

Qi(r,i,#,<^) = ^QiZm(r,i)yzm(y,^) (52) 
l,m

Inserting the expansion 52 in the perturbation equations and multiplying them 
with Yvm' we take advantage of the orthonormality of the spherical harmonics Y/m 
thus removing the angular dependence and achieving a separation of the angular 
variables 9 and ip. We are left with a system of partial differential equations (with 
independent variables t and t only) for the coefficients Qiimkji ^) containing only 
the harmonic degree I as a parameter. As m does not appear explicitly as a 
parameter in the equations, the solutions are 2Z + 1 - fold degenerate. The
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spherical symmetry of the hydrostatic model described in terms of Qo(r) both 
enables the separation of the angular variables by expansion in terms of spherical 
harmonics and induces the degeneracy with respect to the harmonic index m. 
Finally, a separation of the time dependence of the perturbations Qi (enabled by 
the time independence of Qo) is achieved similar to the radial case (see equation 
28) by ’

Qllm^, í) = QllmM exp(wt) (53) 
where w denotes the complex eigenfrequency. Thus the perturbation equations 
are reduced to an ordinary differential system with r as an independent variable 
and the harmonic degree I and the eigenfrequency w as parameters. Keeping in 
mind that its solutions depend on these parameters, superscripts and indices are 
usually omitted at the perturbations.

As the main physical and mathematical aspects of the ordinary differential 
system describing linear nonradial stability and pulsations are similar to those 
discussed in connection with the corresponding radial issue (see sections 2 and 
3) we shall not explicitly present it here. Rather we shall comment only on the 
specifics of the nonradial problem and refer to Glatzel & Gautschy (1992) for 
further details. As its radial counterpart (equations 20 — 23) the nonradial per­
turbation equations consist of three equations associated with mass, momentum 
and energy conservation and one equation related to energy transport. Except 
for an additional term in the mass conservation equation which is proportional 
to KJ + l)/cr2 and gives rise to the existence of gravity waves they exhibit the 
same structure and properties as the radial perturbation equations 20 — 23. 
In contrast to the radial problem Poisson’s equation (second order) needs to 
be solved explicitly when considering nonradial perturbations which implies two 
additional first order equations for the perturbation of the potential and its 
derivative. Accordingly, nonradial stability and pulsations correspond to a sixth 
order boundary eigenvalue problem while radial stability and pulsations lead to 
a fourth order problem.

For the sixth order differential system three unambiguous boundary condi­
tions are provided at the stellar center by the fact that r = 0 is a regular singular 
point of the equations implying a regularity condition for each type of variables 
(thermal, mechanical and potential variables). For the numerical treatment a 
transformation of variables according to Q —> Q/rl is needed (see Glatzel & 
Gautschy, 1992) to avoid numerical ambiguities in the formulation of the inner 
(r = 0) boundary conditions. At the outer boundary (photosphere) only the 
condition involving the potential variables is unique: It is obtained by the re­
quirement that the potential and its derivative is continuously connected to the 
vacuum solution of Poisson’s equation which decays at infinity. Similar to the 
radial case both the thermal and mechanical boundary conditions at the photo­
sphere are ambiguous, since the photosphere is the outer boundary of the stellar 
model but not the physical outer boundary of the star. A possible choice of 
boundary conditions consists of assuming Stefan - Boltzmann’s law to hold and 
the (Lagrangean!) pressure perturbation to vanish there (force - free boundary), 
see also equations 31 and 32.
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Abstract.
The linear stability analysis of stellar models poses a linear fourth 

or sixth order boundary eigenvalue problem. Methods for its numerical 
solution are reviewed, most of which face severe problems, if the ratio of 
the thermal and dynamical timescale falls below unity for a significant 
fraction of the stellar envelope considered. The extremely robust and 
highly accurate Riccati method is introduced and shown to be applicable 
to stellar stability problems with success even in these cases of strong 
deviations from adiabaticity. Numerical simulations of the evolution of a 
stellar instability into the nonlinear regime are still restricted to spherical 
geometry. We address the basic requirements for and problems connected 
with the simulation of radial pulsations. How violent artificial initial per­
turbations may be avoided and the extremely high accuracy requirements 
posed by the differences between the various energy forms can be met by 
strictly conservative numerical schemes is discussed.

Key words: asteroseismology — hydrodynamics — methods: numerical 
— stars: mass loss — stars: oscillations

1. Numerical Solution of the Linear Stability Problems

In the present paper, we will adopt the same notation as in the previous lectures 
in this volume on “Theoretical Description and Basic Physics of Stellar Pulsa­
tions” and on the “Linear Analysis” (hereafter referred to as papers I and II). We 
shall make use of the results obtained there.

1.1. Matrix Methods and Shooting Methods

We consider the boundary eigenvalue problems emerging from the study of lin­
ear stability and pulsations and discussed in sections 2 and 4 of paper II for 
radial and nonradial perturbations respectively. They consist of four (radial per­
turbations) or six (nonradial perturbations) homogeneous ordinary differential 
equations supplemented by two (radial case) or three (nonradial case) homoge­
neous boundary conditions on each end of the integration interval. A solution of 
the boundary value problem is accomplished by adjusting the complex parameter 
a properly. The values of ct which allow for a solution are denoted as eigenvalues 
(or eigenfrequencies).

87
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The solution of the boundary eigenvalue problems using a matrix method 
relies on a discretization of the integration interval by N grid points where xt 
denotes the position of grid point i in the integration interval. The value of a 
dependent variable u at act. is denoted by -u¿: u¿ = u^aciY Derivatives can then 
be expressed in terms of {u¿} and {t¿}. For example, a simple possibility to 
represent the derivative ^ of the variable u would be given by:

du _ ui+i - Uj ^ 
dx x'/i Xi

By the boundary conditions some values of the dependent variables at the bound­
aries of the integration interval are fixed. As a result of this approach we finally 
obtain a linear homogeneous algebraic system of equations which might be writ­
ten as:

A(y)u = 0 (2)

In equation 2 u is for the radial problem a (4 x 2 x A — 4x2)- dimensional 
real vector containing all dependent variables {u¿}. (For the nonradial problem 
it is a (6 x 2 x N — 6 x 2) - dimensional real vector.) The coefficient 4 (or 6) 
stands for the number of dependent continuous variables, i.e., the number of 
differential equations, the coefficient 2 accounts for the fact that the variables 
are complex. The subtraction of 4 x 2 (or 6 x 2) corresponds to the consideration 
of the boundary conditions. A is a matrix having the same dimension as u 
which contains the information on the hydrostatic stellar model and depends 
on the eigenvalue a (and the harmonic degree I as a parameter). The linear 
homogeneous system of equations 2 has a solution, if the determinant of A 
vanishes, i.e., if

det A(y) = 0 (3)

Thus the eigenvalues c are provided by the zeros of the determinant of the matrix 
A. ‘

For the solution of equations 2 and 3 posing a standard problem in linear 
algebra a variety of - mainly iterative - numerical algorithms is available. How­
ever, an iterative solution requires initial guesses both for the eigenvalues and 
the eigenfunctions which are usually taken from the result of a numerically less 
difficult approximate treatment of the problem, e.g., from the adiabatic approx­
imation. As a consequence, eigensolutions which significantly differ from their 
approximation or do not have a counterpart in the approximation at all, cannot 
be identified. Moreover, the convergence of an algorithm towards a pretended 
solution does not prove it to be a true solution of equation 2. Whether the pro­
cedure has converged towards a true or a numerically induced spurious solution 
is often difficult to decide. The dimension of the matrix A is proportional to the 
number N of the grid points used. Thus the resolution of the method is limited 
by the maximum dimension of A, for which the iteration algorithm provides reli­
able results and which can be handled by the available computational device. As 
the optimum distribution of grid points depends both on the hydrostatic model 
and the eigensolution to be calculated, it is not known a priori. Accordingly, for
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a given number of grid points the resolution will suffer from their unfavourable 
distribution.

The solution of the boundary eigenvalue problems using a shooting method 
relies on the integration of the differential equations as an initial value problem 
which guarantees a unique solution for any initial condition (and any value of 
the parameter c). Starting at one of the boundaries, four (radial problem) or 
six (nonradial problem) initial conditions have to be specified only half of which 
are given. The remaining two (or three) initial conditions in addition to the 
eigenvalue ct have to be guessed. Once with these initial conditions (and the 
value of ct chosen) the integration (using any standard algorithm for initial value 
integration) arrives at the other boundary the solution is compared with the 
two (or three) boundary conditions prescribed there. The discrepancy between 
the solution and the boundary conditions forms the basis for the iteration of 
the unknown initial conditions and the eigenvalue ct until solution and boundary 
conditions match.

Shooting methods do not require any estimates for the eigenfunctions. More­
over, the stepsize of the initial value integration can be adapted locally to match 
any prescribed accuracy requirement and to resolve any detail of the eigenfunc­
tion and the hydrostatic model. There are no limitations concerning computer 
storage and the maximum dimension of any matrices involved. A severe problem 
is associated with the iteration of the unknown initial conditions. For bound­
ary eigenvalue problems of higher than second order the ambiguity in the initial 
conditions in general introduces the parasitic growth problem, i.e., exponentially 
growing particular solutions of the initial value problem induced by improperly 
chosen initial conditions will eventually dominate the entire solution and prevent 
a solution of the boundary value problem. Thus the numerical instability associ­
ated with parasitic growth caused by ambiguous initial conditions is the reason, 
why simple shooting methods in general fail when applied to boundary value 
problems of higher than second order. In the next section we shall show how 
the ambiguity in the initial conditions can be avoided and, as a consequence, a 
numerically stable shooting method is obtained which may be used successfully 
to solve high order boundary eigenvalue problems.

1.2. The Riccati Method

The system of differential equations governing linear stability and pulsations may 
be rewritten in terms of vectors u and v and matrices A, B, C and D as

u' = Au + Bv
V = Cu + Dv

where u and v are twodimensional (radial perturbations) or threedimensional 
(nonradial perturbations) vectors each of them containing two (or three) depen­
dent variables. The elements of the 2x2 (or 3x3) matrices correspond to the 
coefficients of the differential systems and can be read off from the equations 
directly. They depend on the hydrostatic model, the eigenfrequency ct and - for 
nonradial perturbations - on the harmonic degree I. As an example, for radial 
perturbations (see equations 20 — 23 of paper II) u and v may be defined as
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(5)

The matrix A is then read off from equations 20 and 23 of paper II as

/ 3c4 —¿C4
\ —4Vq — Vq(4 — kt) (6)

The 2 x 2 (or 3 x 3) complex Riccati matrix R is now defined by

u = Rv (7)

Differentiating 7 and using 4 and 7 to replace u', V and u we obtain

u' = R'v + Rv'
Au + Bv = R'v + R(Cu + Dv) (8)

ARv + Bv = R'v + R(CRv + Dv)

and finally

(R' + RCR + RD - AR - B)v = 0 (9)

Since equation 9 must hold for any arbitrary vector v we are left with the Riccati 
equation for the (complex) Riccati matrix R:

R' = B + AR - RD - RCR (10)
Note that equation 10 is a nonlinear matrix differential equation involving only 
the Riccati matrix and the coefficient matrices A, B, C and D. The boundary 
conditions for the primary linear system 4 can now be rewritten as initial condi­
tions for the integration of the Riccati equation 10. As an example, we consider 
the boundary conditions for radial perturbations at tq = 0 (see equations 35 and 
36 of paper II):

3Ç + ap — 5t = 0 (ID

t ~ ^adP = 0
They are equivalent to the two equations

a ^ A
11 ad / ^

(12)

(13)

t = Vadp (14)

which may be rewritten in terms of the vectors u and v defined by equation 5:

f O = f 0 (-| + ^ad) \ / I 
V / V ° ^ad A P = R(r0 = 0)v (15)
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The matrix relating u and v by definition (see equation 7) corresponds to the 
Riccati matrix R at the boundary tq = 0. It is denoted by R(ro = 0) in equation 
15. From equation 15 we deduce that the boundary conditions unambiguously 
determine the value of the Riccati matrix at the boundary tq = 0, i.e., they 
provide unambiguous initial conditions for the integration of the Riccati equation 
10. With the modification that the inverse of the Riccati matrix is determined 
uniquely this result also holds for the outer boundary (photosphere). In general 
the boundary conditions for the linear boundary value problem 4 imply unique 
initial conditions (in terms of unambiguous initial values for the Riccati matrix or 
its inverse) for the integration of the nonlinear Riccati matrix equation considered 
as an initial value problem.

Equivalently, a complex matrix S relating u and v may be defined by

v = Su (16)

instead of the definition 7 for R. From equations 7 and 16 we deduce that 
S = R 1 (provided that R 1 does exist). Similar to R its inverse matrix S 
satisfies the Riccati equation 10, however with A substituted by D (and vice 
versa) and B substituted by C (and vice versa). During integration R (or S) 
may become singular. In this case we can switch from the integration of R to 
the integration of S (or vice versa). Experiments suggest that switching from 
integrating R to integrating S (or vice versa) is appropriate, if | det R| (or | det S|) 
exceeds a conveniently chosen threshold (> 1).

Thus the Riccati approach consists of a transformation of the linear bound­
ary value problem into a nonlinear initial value problem with unambiguous initial 
conditions for the integration of the Riccati matrix R (or its inverse S). Being a 
shooting method it benefits from all associated advantages in particular concern­
ing reliability, resolution and accuracy. Simultaneously it does not suffer from 
the problem of unknown initial conditions which is typical for shooting methods 
applied to high order differential systems. The Riccati method is based on an 
initial value problem with unique initial conditions. There is no need to iterate 
a priori unknown initial conditions. As a consequence, the Riccati method is 
numerically stable and does not suffer from the parasitic growth problem.

Using the Riccati method the stability problem is characterized by unique 
initial conditions at both boundaries of the integration interval and the coefficient 
matrices A, B, C and D. They depend on the stellar model considered, the 
harmonic degree I and the complex eigenfrequency ct, which is the only free 
parameter of the problem. For arbitrary values of c a solution of the boundary 
eigenvalue problem posed by the stability analysis does not exist (see section 1.1). 
In order to determine those values which allow for a solution of the problem by 
using the Riccati method the Riccati equation is integrated for some prescribed 
value of a from both boundaries (unique initial conditions!) to some intermediate 
point x^.t within the integration interval. As a result, we obtain two Riccati 
matrices at x^t determined by the "inner" integration from the bottom boundary 
to xjit and the "outer" integration from the top boundary to xj^. We denote 
them by R¿„ and R^f.

For a solution of the boundary eigenvalue problem the eigenfunctions need to 
be continuous all over the integration interval, i.e., u and v have to be continuous
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in the integration interval, in particular at xj^. This condition may be written 
as

U^n — ^out 

"^m =  ̂out
(17)

where u¿n and v¿n denote solutions for u and v at xjh obtained by integration 
between the bottom boundary and xjn. uOMf and Vout denote solutions for u 
and v at xju obtained by integration between the top boundary and xj^. Using 
the general definition 7 of the Riccati matrix R we obtain from the requirement 
of continuity at x^t (equation 17)

Wn — RjnVjn — ^OUt — ^-out  ̂out — Ro'U,tVin (18)

and

(Rin - ROÍÍÍ)Vi„ = 0 (19)

A necessary condition for the existence of a solution of the linear homogeneous 
equation 19 is given by

det(Rin - Rent) = 0 (20)

The condition 20 involves R¿n and Rout which only depend on the eigen­
frequency a but otherwise have been uniquely determined by integration of the 
Riccati equation. Thus det(R¿n — Rout) is a complex valued function of the com­
plex variable a and its zeros correspond to a solution of the boundary eigenvalue 
problem. Le.?, those values of a, for which the determinant in equation 20 van­
ishes, are the eigenfrequencies of the system we have been searching for. Their 
determination has thus been reduced to finding the complex zeros of a complex 
valued function, which can be done using standard numerical techniques (e.g., 
the Newton - Raphson method). We emphasize that for the determination of 
the determinant function in equation 20 neither the auxiliary solution of an ap­
proximate problem nor estimates for eigenvalues and eigenfunctions are required. 
The determinant function is entirely based on the unrestricted stability problem 
without reference to any additional approximation or estimate.
In general numerical algorithms used for the precise determination of the zeros of 
a function require initial guesses for the position of the zero to start an iterative 
process. They can be obtained simply by tabulating det(R¿n — Rout) as a function 
of the complex variable a. Note that even these estimates are based on the 
unrestricted stability problem and do not rely on any auxiliary approximative 
treatment. Thus the danger to miss unexpected eigenvalues which are not present 
in approximative treatments of the problem is considerably reduced. Moreover, 
by tabulating the determinant function in the vicinity of a value of a, to which 
an iterative root finding process has converged, it is possible to check whether 
this value corresponds to a spurious or a true eigenvalue of the system. The 
eigenvalues of the stability problem do not (and must not) depend on the choice 
of x^t which is a free parameter of the Riccati method. However, the run of the 
determinant function may sensitively depend on the position of x^t within the
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integration interval and a suitable choice of x^t can considerably facilitate the 
search for eigenvalues and their iteration.

Once an eigenvalue a and the associated Riccati matrix R(t) as a function 
of the independent variable x has been determined, also the corresponding eigen­
functions u(t) and v(t) can be calculated. First of all v¿n is obtained from the 
linear homogeneous continuity condition 19. With v¿n = vOM¿ = v^xj^ we thus 
have initial conditions for the integration of the eigenfunction component v from 
x^t both to the bottom and the top boundary using equation 4 together with 
the definition 7 of the Riccati matrix:

v' = Cu + Dv = (CR + D)v (21)

Note that for the integration of equation 21 the predetermined values for the 
Riccati matrix R have to be used, the Riccati equation and equation 21 must 
not be solved simultaneously. Finally, the eigenfunction component u is obtained 
using the definition 7 of the Riccati matrix as u = Rv.

For more details on the application of the Riccati method to stellar stability 
problems we refer to Gautschy & Glatzel (1990), further discussions of it may 
be found in Scott (1973), Davey (1977) and Sloan (1977).

2. Numerical Simulation of Pulsations in the Nonlinear Regime

Similar to the previous section we shall adopt the same notation as in papers I 
and II and shall make use of the results obtained there.

2.1. Basic Assumptions and Equations

Once a stellar model has been found to be unstable according to a linear stabil­
ity analysis the final result of the instability (e.g., finite amplitude pulsations,: 
mass loss, disruption of the stellar envelope) needs to be determined. A pos­
sible approach consists of following the time development of the instability by 
numerical simulation from hydrostatic equilibrium through the linear phase of 
exponential growth into the nonlinear regime. At this stage the amplitude of the 
perturbation is defined and the growth may enter saturation, if the instability 
leads to finite amplitude pulsations. Should these pulsations be associated with 
mass loss, or should the envelope become disrupted, the results of the simulation 
will then provide corresponding evidence.

Since a suitable numerical procedure, satisfying the necessary requirements 
concerning accuracy and resolution (see below) is not available so far, the nonlin­
ear simulation of nonradial pulsations and intrinsically threedimensional effects 
(magnetic fields, rotation) is not yet feasible. Therefore numerical simulations 
of nonlinear pulsations are so far still restricted to onedimensional studies in 
spherical geometry.

In accordance with our previous discussions the outer boundary of the mod­
els will be taken to be the stellar photosphere, i.e., the atmosphere and optically 
thin parts of the star will be disregarded. As a consequence, radiation transport 
can be described on the basis of the diffusion approximation. In the absence of 
a satisfactory description of convection in a pulsating star we adopt, similar to 
the treatment of convection in the linear analysis (see section 2 of paper II), the
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“frozen - in approximation” (see, e.g., Baker & Kippenhahn, 1965). It consists of 
assuming the convective flux to be constant (and equal to its value in the initial 
hydrostatic model) during pulsations. This assumption is to be understood in 
the Lagrangean framework, i.e., the convective flux is required to be constant in 
time at any value of the Lagrangean coordinate Mr given. For further discussions 
of the “frozen - in approximation” we refer to section 2 of paper II.

Using the assumptions discussed the equations governing nonlinear radial 
pulsations may now be derived directly from sections 2 and 3 of paper I. Their 
analysis and notation closely follows that adopted in the study of Grott et al. 
(2005). For further details we refer to this paper. Adopting a Lagrangean de­
scription with time t and mass Mr as independent variables mass conservation 
(equation 20 of paper I) may be expressed as

2
dt

a 
dM.r

(4tT7'2v) (22)

where v denotes the radial component of the velocity and Vv has been rewritten 
using equation 42 of paper I as

V v = — — (r v) = p —-----  (4tT7'2V
dMr v

With the definition of v

dr 
"dt

(23)

(24)

the equation of momentum conservation (equation 43 of paper I) is written as

d-v 2 dp— = — 4 tit  
dt dMr

GM.r x
(25)

Using 23 for Vv (together with a corresponding relation for VF) we obtain for 
the equation of energy conservation from equation 25 of paper I:

du d ,, 2—— = — p —----- 4tT7' V
dt dMr

d 
dM.r

(47TV2 Frad) a., (4tt7' Fcony) pq (26)
O IVlp

where the radial component F of the total heat flux is given by the radial 
components of the radiative and convective fluxes, Frad and Fconv, through 
F = Frad + Fconv. In deriving equation 26 nuclear energy generation has been 
disregarded (e = 0), since for the models considered pulsations are restricted to 
the stellar envelopes, where nuclear processes are irrelevant.
Finally, we obtain for the radiative energy transport in the diffusion approxima­
tion from equation 45 of paper I:

4^2 C ^Prad 
K, dM.r (27)

where the radiative luminosity has been replaced by the radiative flux and the 
temperature T has been expressed in terms of the radiation pressure prad-
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Equations 22, 24, 25, 26 and 27 together with a thermal and a caloric 
equation of state form a closed system for the determination of the dependent 
variables r, v, Frad, u, p, p and praci (instead of T(. Note that Fconv is fixed in the 
frozen - in approximation. The quantities Xq and pq occurring in the momentum 
and energy conservation equations account for the artificial (numerical) viscosity 
needed to treat shock waves, which typically occur during the evolution of a 
stellar instability. For more information on this issue, see Grott et al. (2005).

The momentum and energy conservation equations 25 and 26 provide the 
energy balance of the system by using a familiar procedure: Equation 25 is 
multiplied with the velocity v and integrated over a mass element. Then equation 
26 is integrated over the same mass element and added to the result. We obtain

(.Ekin T Efiierm + Egrav) + NLfi-ierm + NLacoustic = 0 (28)

or, alternatively, after integrating equation 28 over the time and subtracting the 
initial values of Ekin, Etherm and Egrav:

+ j M^ylt - 0 (29)
Ekin T Efherm T Egrav + 'therm dt

Equations 28 and 29 represent the energy balance of the system. They are valid 
for any mass element and therefore also for the entire stellar envelope. Here, 
Ekin, Efherm and Egrav refer to the kinetic, thermal and gravitational potential 
energy content of the mass element, respectively. ALtherm denotes the difference 
of the total thermal (radiative and convective) luminosity between the top and 
the bottom boundary of the mass element, and NLacousttc describes its analogue 
for the acoustic luminosity LacoustiC- The latter is defined as

Lacoustic = 47rr2up (30)

and represents the luminosity which is associated with the mechanical (acoustic) 
energy flux given by the product of velocity and pressure. E.g., sound waves and 
shock waves imply an energy flux and an acoustic luminosity which is described 
by equation 30.

2.2. Demands on the Numerical Treatment
Apart from standard tests for the numerical scheme (e.g., validation of the code 
with respect to the correct representation of shock waves according to Noh 
(1987)) we require the numerical simulation to start from hydrostatic equilib­
rium and to reveal the physical instability without any additional action or 
external perturbation. If the numerical scheme is too dissipative, the model 
remains in equilibrium and an external perturbation would be required to initi­
ate any motion, which is not necessarily related to the physical instability. For 
low numerical dissipation the system often exhibits violent initial perturbations 
with amplitudes in the nonlinear regime. As a consequence, the linear phase of 
exponential growth of the physical instability is not represented and the question 
remains, whether the result of the simulation is a numerical artefact caused by 
initial perturbations rather than by the physical instability. For a validation of 
the code we therefore require that the simulation covers the linear phase. Then
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growth rates and periods of unstable modes derived from the simulation can be 
compared with their independently predetermined counterparts from the linear 
analysis.

To overcome the unphysical initial perturbations artificial dissipation and 
viscosity or a pseudo time evolution of the grid (see, e.g., Dorfi & Drury (1987) 
and Dorfi & Feuchtinger (1991)) have been introduced. As a consequence, the 
physical instability then has to be triggered by an external perturbation which is 
undesirable as discussed above. The unwanted initial perturbations were found 
by Grott et al. (2005) to be caused by a mismatch of the prescribed initial model 
and the numerical scheme used for the simulation, i.e., the initial model is not in 
hydrostatic equilibrium with respect to the numerical scheme. A deviation from 
equilibrium (as defined on the basis of the difference scheme used) implies ac­
celerations and thus initial perturbations which may reach the nonlinear regime. 
A solution of the problem proposed by Grott et al. (2005) therefore consists of 
adjusting the prescribed initial model to the numerical scheme such that the 
slightly modified initial model represents a perfect hydrostatic equilibrium with 
respect to it.

Adopting - with vanishing accelerations - the numerical scheme used for the 
subsequent simulations a new hydrostatic initial model is constructed by an iter­
ative relaxation procedure where the original initial model is taken as an initial 
guess. As a result, the artificial initial perturbations in fact disappear without 
the necessity to introduce artificial dissipation. Moreover, due to minimal numer­
ical dissipation the code picks up the physical instability from numerical noise 
without any further action or external perturbation. The time evolution of the 
instability then enters the linear phase of exponential growth, where - for valida­
tion of the code - the pulsation period and the growth rate determined from the 
simulation can be compared with the corresponding predetermined values from 
the independent linear analysis.

For illustration the time evolution of the instability of a stellar model cor­
responding to a mass of M = 45Af0, the luminosity L = 5.37 x 1O5L0, the 
effective temperature Tejj = 33890/< and the chemical composition (A", Y, Z) = 
(0.7,0.28,0.02) is shown in Figure 1, where the velocity at the outermost grid 
point of the model is given as a function of time. It starts from hydrostatic 
equilibrium with velocity perturbations of the order of 10~5cm/sec which corre­
spond to the numerical noise level. Then the code picks up (without any further 
action or external perturbation) an unstable mode with a period of 0.62d and 
a growth rate of 0.64/d which differ from their counterparts determined by the 
linear analysis by less than 5 per cent. After ~ 45d the linear phase of expo­
nential growth comes to an end and the evolution enters the nonlinear regime 
where the velocity amplitude saturates at a value corresponding to 19 per cent 
of the escape velocity. Thus finite amplitude pulsations are the final result of the 
instability of the model considered.

Apart from validation of the code in the linear regime by comparison with 
the results of an independent linear analysis the compliance with the energy 
balance 29 of the simulation provides an essential criterion for its quality. As an 
example, the various energy terms occurring in equation 29 are given as a function 
of time in Figures 2, 3 and 4 for the simulation of the unstable model considered 
above in a time interval covering some pulsation periods in the nonlinear regime.
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Figure 1. The velocity at the outermost grid point as a function of 
time for an unstable stellar model with the mass M = 45M0, the lu­
minosity L = 5.37 x 105Lq. the effective temperature Te^ = 33890K 
and the chemical composition (X. Y, Z^ = (0.7, 0.28, 0.02) (from Figure 
1 of Grott et al. (2005)). The evolution starts from hydrostatic equilib­
rium with velocity perturbations of the order of 105cm/sec (numerical 
noise), enters the linear phase of exponential growth of the instability 
and finally reaches the nonlinear regime where the velocity amplitude 
saturates at a value corresponding to 19 per cent of the escape velocity. 
Finite amplitude pulsations are the final result of the instability in this 
case.
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Figure 2. The thermal energy (solid line) and the gravitational po­
tential energy (dotted line) of the stellar envelope (initial hydrostatic 
values are subtracted) as a function of time for the same unstable stellar 
model as in Figure 1 (from Figure 1 of Grott et al. (2005)).
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Figure 3. The kinetic energy of the stellar envelope (solid line) and 
the time integral of the difference between top and bottom boundary 
of the envelope of the thermal luminosity (dotted line) as a function of 
time for the same unstable stellar model as in Figure 1 (from Figure 1 
of Grott et al. (2005)).
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Figure 4. The time integral of the difference between top and bottom 
boundary of the envelope of the acoustic luminosity as a function of 
time for the same unstable stellar model as in Figure 1 (from Figure 1 
of Grott et al. (2005)).
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From Figures 2, 3 and 4 we deduce that the thermal and gravitational po­
tential energies exceed the other terms by more than two orders of magnitude 
their sum being of the order of the kinetic energy and the time integral of the 
thermal luminosity which exceed the time integral of the acoustic luminosity by 
one order of magnitude. I.e., the terms in the energy balance 29 in general differ 
by up to four orders of magnitude. Therefore a meaningful determination of the 
kinetic energy (and thus also of the amplitude of the velocity) and the acous­
tic luminosity requires a relative accuracy of at least IO5 which can never be 
achieved by grid refinement or increased time resolution in standard numerical 
schemes. A solution of the problem consists of adopting a fully conservative nu­
merical scheme (see, e.g., Fraley (1968) and Grott et al. (2005)) which satisfies 
the energy balance intrinsically for each mass element. Necessary for full con- 
servativity is that the difference operators have the same properties and satisfy 
the same relations as their differential counterparts. Some aspects of the explicit 
construction of a fully conservative scheme for the simulation of radial stellar 
pulsations will be discussed in section 2.3.

According to equation 29 the sum of all energy terms shown in Figures 2, 
3 and 4 should vanish, if the energy balance is satisfied. In other words, this 
sum obtained from the results of a simulation corresponds to its error in the 
energy balance. It is given in Figure 5 as a function of time for the simulation of 
the unstable model considered above and found to be smaller by five orders of 
magnitude than the time integral of the acoustic luminosity being the smallest 
term in the energy balance 29. We conclude that all energies, in particular the 
kinetic energy and the time integral of the acoustic luminosity, are determined 
with sufficient accuracy to allow for meaningful statements concerning velocity 
amplitudes and acoustic energy fluxes of the final finite amplitude pulsations. 
Any simulation of stellar pulsations should be required to prove its quality by 
presenting the energy balance and its error. We emphasize that the extreme 
accuracy requirements can only be satisfied by fully conservative schemes.

Concerning pulsationally driven mass loss as a possible final result of a stel­
lar instability the time integral of the acoustic luminosity (see Figure 4) is of 
particular interest. In each pulsation cycle phases of incoming and outgoing 
acoustic energy fluxes prevail, i.e., the time integral of the acoustic luminosity is 
not a monotone function. However, if the outgoing fluxes exceed the incoming 
fluxes, the average over one pulsation period of the time integral of the acoustic 
luminosity will increase with time. We deduce from Figure 4 that this holds 
for the final finite amplitude pulsations of the model discussed above. A conse­
quence of the increase with time of the mean of the time integral of the acoustic 
luminosity is a mean acoustic luminosity driven by the pulsations, which can be 
derived from the simulations as the mean slope of the curve shown in Figure 
4. Should this mean acoustic (mechanical) luminosity ultimately drive a stellar 
wind, its mass loss rate may be estimated by requiring the acoustic luminosity 
to be comparable with the kinetic energy per time lost in the wind.

2.3. Basic Properties of Fully Conservative Schemes

The derivation of the energy balance 28 for a mass element implies the mul­
tiplication of equation 25 (momentum conservation) with the velocity v = ^ 
together with the following subsequent transformations of the time derivatives:
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Figure 5. The sum of all energies (thermal, gravitational potential, 
kinetic, time integrated thermal luminosity, time integrated acoustic 
luminosity) presented in Figures 2, 3 and 4 as a function of time (from 
Figure 1 of Grott et al. (2005)). According to equation 29 it corresponds 
to the numerical error in the energy balance.
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dr d /1 oA
dt = dt V2V )

GM A _dr f GMA _ ^ (GMT 
A / dt V A / dt \ r

(31)

(32)

Without the differential relations 31 and 32 the energy balance 28 would not hold. 
As a consequence, these relations must hold also for the difference analoga of the 
differential operators, if we require the energy balance to hold for the numerical 
solution of equations 22, 24, 25, 26 and 27. In other words, the numerical scheme 
has to be designed such that it satisfies equations 31 and 32 intrinsically.

For a numerical treatment the derivative with respect to time of a quantity 
Q may be represented by the difference scheme

(33)

where Q = QA denotes the value of Q at time t and Q = Q(t + r) its value at 
time t + t. We introduce time averages QA by

QW=aQ + (l-AQ (34)

with 0 < a < 1. Thus we obtain for the difference analogon of equation 31

v — v dr• ------  <— v • —
T dt

d_ 
dt

1A — A
2 T (35)

If the relation 31 is required to hold also for the difference scheme we deduce 
tA = t/1/2) from equation 35. As a consequence the difference analogon of 
equation 24 is given by

= tAA (36)

Similarly we obtain for the difference analogon of equation 32

r — r / GMr \ dr / GMr \ 
t \ ?-(?)2 / \ A )

d dGMA 
dt \ r /

1 ÍGMt GM

If the relation 32 is required to hold also for the difference scheme we deduce 
^yp = A from equation 37.

Thus we have shown that the numerical representation of the velocity and 
the gravitational force cannot be chosen arbitrarily, if the energy balance is 
required to hold intrinsically for each mass element, i.e., if the numerical scheme 
has to be strictly conservative. Rather the time averages of the velocity and the 
gravitational force are determined by the condition of full conservativity:

v —> t/1/2) GMr GMr
(38)
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An immediate consequence of the time averages 38 required by conservativity is 
that the numerical scheme is necessarily implicit with respect to time, i.e., at each 
time step a system of implicit algebraic equations has to be solved. Concerning 
the construction of strictly conservative numerical schemes for the simulation of 
nonlinear nonradial stellar pulsations we refer to Glatzel & Chernigovski (2016).
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2. We will focus on point observations. To determine if there is any periodic 
signal in our observation, different techniques are available:

Fourier methods: they include the standard Fourier transform, the classi­
cal or Schuster periodogram, the Lomb-Scargle periodogram, various correlation 
functions, and wavelets.

Phase-folding methods: some trial periods are assumed, and the observa­
tions are folded in such a way that they fall in one cycle of those periods. If the 
period is correct, the resulting points will be almost aligned, except for observa­
tional errors. The string length method determines the best period by computing
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de La Plata, Paseo del Bosque s/n 1900 La Plata, Argentina
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Abstract. Fourier’s traditional signal analysis does not work when ob­
servations are not equispaced in time, as is usually the case in Astronomy. 
The Lomb Scargle periodogram is the favorite substitute. We will study 
the basics of this technique and some care that needs to be taken for its 
practical application and its interpretation.

Key words: asteroseismology — instabilities — stars: oscillations — 
stars: interiors — planet-star interactions

1. A Short Introduction

0. The structure of this class follows broadly that of the excellent article by 
VanderPlas (2018). Most examples are taken from that paper, though all the 
figures were rebuilt by the author.

1. There are many ways to get data in Astronomy. Let’s list a few main ones:
Binned observations: this mode is used, for example, when recording the 

arrival of cosmic rays that produce Cherenkov radiation inside water-filled tanks, 
thus effectively binning the events into the volumes of the array of tanks.

Time-tag observations: data obtained, for example, when recording the ar­
rival times of individual photons reflected from laser pulses which were sent to 
the Moon.

Time-to-spill observations: used, for example, when recording the time re­
quired for a fixed number of gamma rays to accumulate.

Point observations: this is the typical mode of optical astronomy, where 
stellar brightnesses are measured only at certain moments.
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the length of the path that joins neighboring points, and choosing the shortest. 
Analysis of variance is based on how the points get distributed in a histogram. 
The conditional entropy directly measures the disorder of the points.

Least-squares methods: among them, we will mention the Lomb-Scargle pe­
riodogram and the Supersmoother approach, which performs local least-squares 
fits instead of a global one.

Bayesian methods: they include phase binning, similar to the analysis of 
variance, and stochastic processes.

In the rest of the class, we will deal mainly with the Lomb-Scargle method, 
which is a favorite among astronomers. To do so, we first need to talk about the 
Fourier transform and the classical periodogram. You have probably noticed that 
the Lomb-Scargle periodogram also appears within the least-squares methods... 
we will come back to this unique feature later.

2. The Fourier Transform

3. Let’s start with the Fourier transform. What are we doing when we do this 
transform? Let’s suppose a space in which the three axes are not x, y and x, 
but 05 1 05 05 and x2. A point in this space (Figure 1, left) will have, 
say, coordinates «o, «i and «2, so the point will be the second-degree polynomial 
qqx0 + nix1 + a^x2. Any other point in this space represents another of these 
polynomials. The entire space is, therefore, the complete set of second-degree 
polynomials. We emphasize that this is possible because the different powers 
of x are linearly independent. For example, we cannot get x2 by any linear 
combination of x° and x1.
4. Now, suppose we add more orthogonal axes to our space. In such a case, the 
resulting space will represent higher-grade polynomials. If we keep adding axes 
until we have an infinite number of them, we will have an infinite sum of terms, 
what we know as Taylor’s series. Any analytical function f(x) developed as a 
polynomial gives us its Taylor series:

oo

/(x) = oqx0 + mx1 + a^x2 + • • • + cijX^ + • • • = y^ anxn. (1) 
n=0

The square of each coefficient a¿ is the power with which the exponent i con­
tributes to the function f. For example, a zero coefficient means that that 
exponent does not contribute to the function.
5. Now, let’s suppose that the axes of our original 3D space are not powers of x 
but complex exponentials of the variable — t (Figure 1, right): e ''^ = 1, 6”™% 
e~'2a)t, iabeied by integer multiples of a given frequency w: Ow, lev, 2w. We 
recall that these exponentials are again linearly independent. Let’s call «o^, «i^ 
and ci2uj the coordinates of a point in this space. As before, this point defines 
a function. Changing the notation from ncu to u)n, our function will be written 
like this:

2

Kf) = a^e-'^ + a^e^ = ^a^e"'1^. (2)
n=0
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Figure 1. Left: the three-dimensional space of second-degree polyno­
mials. Right: a new three-dimensional space for functions.

6. Let’s suppose again that we add infinite orthogonal axes to our space, in this 
case adding also the negative multiples of the frequency w. A point in this space 
will be a function composed of an infinite number of complex exponentials, each 
corresponding to an integer multiple of a given frequency, i.e. the Fourier series 
of a function /:

/(i) =---- y a^e-1^"^ + a^e-1^1 + a^e"1^1 + ...

where in the last fine we have redefined the coefficients a = gf\pÃK for future 
convenience. As before, the square of each coefficient |^n|2 is the power with 
which each frequency ccn contributes to the function /. Note that the coefficients 
are now complex numbers, so the square means the square of their moduli.
7. We want to move now from discrete to continuous developments. To this 
end, we take all the real values of the frequency instead of an infinite countable 
number of them. In this way, the discrete subindexes of g become a continuous 
variable, the mn become the real variable ív, and the summation over ujn becomes 
an integral over w, so we obtain

which is called the inverse Fourier transform of the function g.

(4)
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The amplitude |g(w)|2, now a function of w, is called the power spectrum 
of /. In other words, the function g(w) contains all the information about how 
much power there is in each co. This is very important: if we could compute g 
from a given f, we would know how much power a signal with frequency co is 
contributing to f.

8. So let’s see how to calculate g given a function f. Starting from Eq. (4), the 
first step is to multiply both members by a complex exponential with a frequency 
co', a new variable. Then, we integrate over t, covering all possible times. The 
next step is to interchange the integrals of the second member; g(co^ can come 
out of the integral over t. The inner integral is then one of the definitions of the 
Dirac delta.

The Dirac delta is a distribution that has the following property, among 
others: if multiplied by another function and integrated, and if the interval of 
integration contains the zero of its argument, then the result is the other function 
evaluated at the point where the Dirac delta is zero. After doing this integral, 
the variable co has gone, so we may eliminate the prime. Then we obtain

1 •
g^= dtftfe^

V27T
(5)

that is, we have solved for our function g, which is the Fourier transform of the 
function f. Sometimes it is convenient to express the transform as an operation 
on f giving g as the result. In this case, the transform is seen as a functional, 
that is, as an operator on a function, and the notation is usually g(w) = ^[f]. 
An operator notation can be used for the inverse too: f(f) = F ff.
9. Some interesting properties of the Fourier transform are:

Time scaling: JV(at)] = ¿g(^).
Frequency scaling: J"1^^^ = ^ f Q.
Time shifting: J"[f(t — to)] = gW) elut°.
Frequency shifting: J7-1^^ — wq)] = /(t) e IM|/.
If /(t) 6 1 ^ fl(-^) = gW =^ lfl(-^)|2 = |y(^)|2, i-e. the

power spectrum is even. Physical data are always real, so their power spectrum 
is always even. If, in addition, J(t) is even, then g(w) is real and even too.

10. Recapitulating, the power spectrum is a positive real-valued function that 
quantifies the contribution of each frequency co to the total signal. Let’s see some 
examples (see Figure 2). All these examples are real even functions, so we may 
plot only the real parts of the Fourier transforms.

Suppose that we have a sinusoidal signal, with a period T and frequency 
co. Its Fourier transform will be a pair of Dirac deltas, at frequencies co and — co. 
That is, the only frequency contributing to our signal is co.

Now, let our signal be a Gaussian, with dispersion a. Its Fourier transform 
will be another Gaussian, but with a dispersion which is inversely proportional 
to the original one. This is a characteristic of the Fourier transform: the wider 
a feature in the original signal, the narrower the corresponding feature in the 
space of frequencies, and vice versa.

Now let our signal be a top hat function, that is, a constant signal only 
in a given time interval. On, off. The Fourier transform is a sine function,
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Gaussian

Sine

T

Figure 2. Left: different signals. Right: their Fourier transforms.
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i.e. sin(7ra;)/(7ra;), with a width again inversely proportional to the width of the 
original signal.

If our signal is a Dirac comb, that is an infinite series of Dirac deltas evenly 
spaced in time representing a periodic instantaneous signal, then the Fourier 
transform is another Dirac comb, but with spacing in frequency inversely pro­
portional to the time interval of the signal.

11. An important operation that we are going to use is convolution. The con­
volution f * g between two functions / and g is defined as the integral over time 
of the product of the two functions, but with one of them delayed in time:

Z
OO

àt'Kt'Mt-n (6)
-oo

This is equivalent to sliding one of the functions over the other and calculating 
the integral at each step.

There is a convolution theorem that establishes that the Fourier transform of 
a convolution is equivalent to the point-to-point product of the Fourier transforms 
of each function:

^[W^/bm (7)
A corollary of this theorem is that the Fourier transform of a product of functions 
is equivalent to the convolution of the Fourier transforms of each function:

^Vf-g^^WW (8)

12. Now, when we observe a signal, we never observe the true signal. We are not 
talking about errors, but about the observing window. For example, if we observe 
the magnitude of a star, we are imposing both a top hat between our first and 
last observations and a discretization because we do not observe continuously. 
So, our observed signal will always be affected by a window function W. Then, 
when we compute the transform of an observed signal, a convolution with the 
transform of the window will always be present.
13. Let’s see an example of this (Figure 3). Let’s take a signal made up of four 
sines, with different amplitudes and frequencies. If we observe this signal contin­
uously between two moments of time, that is, with a top-hat observing window, 
the resulting observed signal will be the point product of the two functions.

What happens in the frequency world? The transformed signal is, as ex­
pected, a set of peaks at the four frequencies that make up the signal. The 
transformed window will be, as we already know, a sine function. We have to 
convolve both transforms to obtain the Fourier transform of the observed signal. 
As we can see in Figure 3, the form and width of the sine function is replicated 
at each of the peaks of the original transform.
14. Let’s see another example (Figure 4). Our original signal is now a simple 
Gaussian, but observed only in a set of moments uniformly spaced in time. Thus, 
our observed data is a series of Dirac deltas with amplitudes modulated by the 
Gaussian. The frequency content of the original signal will be a Gaussian, and 
that of the window will be a Dirac comb. When they are convolved they yield 
our Gaussian replicated on each of the peaks of the comb.
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Signal

Figure 3. Left: a signal, a window and their point-to-point product. 
Right: their respective Fourier transforms.
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Figure 4. Left: another signal, another window and their point-to- 
point product. Right: their respective Fourier transforms.
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15. The last example leads us to one of the problems of all this. Let’s see. Let’s 
take again the last Gaussian as the original signal. Now, we observe again the 
signal with a Dirac comb, but with a lower frequency than before (Figure 5). 
Therefore, we are observing now a few peaks. On the spectra side, we have our 
usual spectrum for the real signal, and a Dirac comb for the spectrum of the 
window, though with teeth closer to each other. Note in the resulting convolved 
spectrum how the Gaussians have no place to fit between the teeth of the comb. 
We can lose all hope of recovering the real spectrum.

16. This brings us to the Nyquist limit. Recapitulating: a function uniformly 
sampled in time can be fully recovered only if its Fourier transform can fit entirely 
between the teeth of the comb. Therefore, let’s suppose we sample our signal at 
time intervals T. The sampling rate, let’s call it wq, is then Tk]T. To recover the 
signal, it should be made up only of frequencies in between ±wq/2 to fit between 
the teeth.

The traditional Nyquist theorem goes in the other direction: to fully rep­
resent the frequency content of a band-limited signal ±wq, we must sample the 
data with a rate of at least 2wq, called the Nyquist frequency.

17. Now, our last step towards the periodogram is to consider the discrete 
Fourier transform. Let’s take an infinitely long and continuous signal fit), and 
let’s sample it with a Dirac comb with spacing At. The observed signal will be 
the point-to-point product of both:

fobs(i) =/(t)-IIIAi(t), (9)

where IIIaí symbolizes a Dirac comb with spacing At. Note that the signal 
is known only at the times nAt, with n an integer. If we compute its Fourier 
transform, we obtain

1 oo

Z|UM = ^ £/„«""", (10) 
v n=—oo

where we have used fn = f{nNt) to simplify the notation.
However, in a real observation, we do not take an infinite number of samples, 

but a finite number of them. This is equivalent to applying a top-hat rectangular 
window of width NAt where A + l is the total number of samples, so if we choose 
arbitrarily t = 0 at the first observation, the summation goes only from 0 to A:

^[fobs]M = (11)

18. Note that, by construction, the last expression is the Fourier transform of the 
original signal sampled with a Dirac comb and convolved with a sine function of 
width 4tt/T = 4tt/(AAí) (because we have applied a top-hat window of width 
N At\ Then the spectral Dirac comb will be smeared with this width. Now, 
according to the Nyquist theorem, two values of the spectrum at frequencies 
within 2tt/(AAt) will not be independent, but they will belong to more than
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Figure 5. Left: same signal but another window, and their point-to- 
point product. Right: their respective Fourier transforms. The gray 
lines are the individual peaks generated by each tooth of the Dirac 
comb.

Observed
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one peak. Then, to get the maximum information we should sample the spectrum 
at N evenly spaced frequencies with a separation

Au =
2tt

NAT (12)

If we call kNu) the resulting frequencies, we get

7Vobs](fcAcu) = ¿Ae1^^

v 77=0

Defining for convenience

we finally get

A = Vw^obsKfcAcu),

(13)

(14)

(15)

which you will recognize as the discrete Fourier transform of the set fn. Note that 
the spacing of the frequencies is optimal in terms of both the Nyquist sampling 
and the effect of the finite observing window.

3. The Periodogram

19. We are now in a position to study the periodogram. The classical peri­
odogram was defined by Schuster (1898) as

Ps^ = V
N

Ec i u) -nAt

77=1
(16)

If you look closely, you will find that it is the square of the modulus of the 
discrete Fourier transform of the set fn, but evaluated at any real frequency.

What is the maximum frequency at which we should evaluate this func­
tion? Naturally, at the Nyquist frequency, since beyond that there is no new 
information. The spectrum begins to repeat itself, a feature called aliasing.
20. Now, we have to deal with a very important problem, always present in 
Astronomy: non-uniform sampling. In practice, we do not sample a signal at a 
periodic rate, but at a set of times tn unevenly distributed:

N 
^W^E^-U (17)

77=1

where ¿d is the Dirac delta. The observed signal is then a product of the true 
signal by this window, resulting in an uneven distribution of values of the func­
tion:

N
/obs(i) = /(i) • W^Çt) = ^2 fMÔDÍt - t„), (18)

77=1
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and the Fourier transform of the observed set will be the convolution of the real 
signal with this irregular window:

nfobs]=nf]*nitW (19)

21. Let’s see what happens. Let’s take a Gaussian as a model of our signal. 
Figure 6 (left) shows the original signal, an irregular window, and their product 
which is the observed function. On the spectral side (Figure 6, right), see what 
happens with the spectrum of the window: it has lost all regularity. It is no longer 
a Dirac comb, but a completely irregular function. The convolution results in 
the ugly Fourier transform at the bottom. Note that the original Gaussian is 
almost lost.

We conclude that an irregular spacing of the observations leads to an irreg­
ular spacing of frequency peaks in the window transform, and that there is no 
exact aliasing of the true signal, so we cannot recover the true Fourier transform.

22. A question immediately arises: what is now the Nyquist frequency? The 
question is relevant because the uneven sampling has destroyed the symmetry 
on which the concept of Nyquist frequency rested. There are in the literature 
several attempts to define a substitute for the Nyquist frequency: the inverse of 
the mean of the sampling interval, their harmonic mean, their median, or even 
the minimum among them. It turns out that none of these approaches is correct. 
The practical pseudo-Nyquist frequency can be far larger than any of these.

23. Let’s see an example. We analize 100 samples taken at random times 
between 0 and 1200 of the signal

/(i) = 10 + 7.5 sin(100i) + 13 % white noise. (20)

Note that the only frequency present in our signal is w = 100. Figure 7 (left) 
shows the resulting observed signal. Note that a frequency of 100 corresponds 
to a period of 2tt/100, something that is not (and cannot be) visible at all in the 
plot.

24. Figure 7 (right) shows the periodogram of this set, in an interval of frequen­
cies that includes 100. Surprisingly, the periodogram recovers the true frequency 
even when the signal is invisible to the eye! But see also the proposed pseudo­
Nyquist frequencies. With none of them we could have recovered the true result. 
Note that we have extended the periodogram beyond 100 because we knew that 
that was the target frequency. But in practice, this is precisely the unknown. 
How far do we have to extend the periodogram, that is, what is an effective 
pseudo-Nyquist frequency?

25. Eyer & Bartholdi (1999) have proved this theorem: the equivalent Nyquist 
frequency is ir/p, where p is the largest factor such that each spacing At¿ is 
exactly an integer multiple of this factor. In other words, p is such that we can 
put each observing time in a multiple of it. But a corollary is that if any pair of 
observation spacings has an irrational ratio, then the pseudo-Nyquist frequency 
is infinity! Fortunately, the observations always have a finite precision, so the 
limit frequency in practice can be computed as w^y = tt10°, where D is the 
number of decimal places of the observations.
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Window

Figure 6. Left: a Gaussian signal, an irregular observing window,
and their point-to-point product. Right: their respective Fourier trans­
forms.
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Figure 7. Left: an irregular sampling of a sinusoidal signal plus noise. 
Right: its periodogram, with some pseudo-Nyquist frequencies shown.

26. We finally got to the Lomb-Scargle periodogram. The classical periodogram 
can be rewritten

(21)

where we have separated the exponentials in sines and cosines. This classical 
periodogram has nice statistical properties. For example, if the signal is pure 
Gaussian noise and it is uniformly sampled, then its values are y2 distributed. 
Therefore, when a signal is present it is easily detectable because the distribution 
of values of the periodogram will not be y2 distributed. The problem is: when 
the sampling is irregular, this property is completely lost.

27. Scargle (1982) was the one who solved this problem. He assumed a general­
ization of the periodogram,

with A, B and t functions of co. He proved that the three functions can be chosen 
so that a) the periodogram reduces to the classical one when the observations 
are equally-spaced in time; b) the periodogram’s statistics are computable; and 
c) it is insensitive to time-shifts.

28. Here is the expression obtained by Scargle:

(23)
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Note that t depends only on the times of observation.
29. As we have anticipated, the Lomb-Scargle periodogram has also a least­
squares interpretation. Lomb (1976) showed that this periodogram is obtained 
if we fit a model to our data consisting of a sinusoid at each candidate w:

ylt',^ = Aysin^t - y)^. (25)

As usual in the least-squares method, we compute the merit figure y2 by summing 
up all the squares of the differences between the model and the observations:

X'V) = 52 (y» - Wn,^. (26)
n=l

If we call x2 the value obtained by minimizing Eq. (26) at each frequency with 
respect to the amplitude A^ and the phase y?^, and Xo the dispersion of the 
observations, then the Lomb-Scargle periodogram can be written thus:

(27)

30. The least-squares interpretation of the Lomb-Scargle periodogram allows 
treating measurement errors easily. If each observation yn carries an error an, 
then the standard approach of the least-squares method is to add those errors in 
the denominators of the x2 statistic. Therefore, we do the same in our case:

y n - yktm ^) (28)

After some algebra, the resulting periodogram is the same as the standard Lomb- 
Scargle periodogram, but every sum of the expression adds a weight wn computed 
as usual from the observational errors:

(29)

Thus for example,

52^» cos(w \tn - t] ) becomes 52 w»/» cos(w [^ - TD- (30)

r(w) = — arctan
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Figure 8. Left: random sampling of a sinusoidal signal plus noise, 
centered at a value of 16. Right: its periodogram.

Periodogram

Figure 9. Left: the same random sampling, but now centered around 
0. Right: its periodogram.

31. Another important issue relative to periodograms is that of the mean of the 
observations. Let’s work with the signal

/(t) = 16 + 2sin(wi) + white noise, (31)

with co = 2ir • 0.3. We generate 100 random observations between 0 and 100 in 
time, shown in Figure 8 (left) where we have folded all the observations modulo 
the period. The points were repeated in a second period to better visualize the 
results. Note that the data are centered around 16; this might be the result of 
observing the magnitude of some variable star.

The periodogram, in cycles per unit time, is shown in Figure 8, right. We 
look for a feature at a frequency 0.3, but there is nothing! In fact, there is not 
even a peak! What is happening here is that the periodogram is fooled by the 
mean value of the data.
32. Let’s center the data around zero (Figure 9). Now it is! A clean, superb, 
lonely peak at a frequency of 0.3. The moral is: always center the data before 
computing a periodogram.
33. There is another problem to take care of. Let’s suppose that we are mea­
suring the magnitude of some variable star, with the same signal as before with
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Figure 10. Left: data with an unreachable (gray) band. Right: its 
periodogram.

Figure 11. The signal that the periodogram sees (solid green curve).

frequency 0.3, but that our telescope has a limiting magnitude. Figure 10 (left) 
shows an example; the data is considered unreachable above magnitude 16.8.

Let’s compute the periodogram (Figure 10, right). As we can see, it shows 
that 0.6 is the main frequency, a harmonic of the true one. What happens here is 
that the periodogram tries to adjust the frequency to the data it has, obtaining 
the signal shown in Figure 11.

34. The solution is to compute the periodogram with a so-called floating mean, 
also known as date-compensated discrete Fourier transform or generalized Lomb- 
Scargle periodogram. It consists of adding an offset to each frequency:

yU^w) = yo^ + A^sin^t - vyj. (32)

Then, this new problem has the offset yo(^) as a third parameter to be found, 
along with amplitude and phase. To simplify the notation, we define the following 
abbreviation:

N
[fc] = ^Wnfn COs(lJ \tn - r]), (33)

Tf=l
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Figure 12. Left: floating mean periodogram. Right: the recovered 
signal (solid red curve).

and similar expressions for other cases. With this notation, the resulting peri­
odogram with floating mean is

with

^ls(w) 2 V [c2] - [c]2

tM
i

= — arctan 
2uj V[c2 — S2] — ([c]2 — [s]2)/

(34)

(35)

35. Let’s compute the periodogram of our limited-magnitude sample with a 
floating mean (Figure 12, left). Now it is. The correct frequency is recovered with 
high flying colors. The periodogram can see now the true frequency (Figure 12, 
right).

36. At last, the problem of uncertainty. We, as scientists, are supposed to give 
observational results with their error bars. For frequencies, we usually take the 
width of a line as a measure of its uncertainty. But since a periodogram is a 
set of values at discrete frequencies, we do not have proper lines. However, we 
can get a width of a line if we compute the values of the periodogram at many 
frequencies between those already computed, thus achieving a quasi-continuous 
curve by joining the values at each frequency.

37. We take as a benchmark

/(t) = sin(wi) + white noise, (36)

with co = 2tt • 1, sampling it at N points randomly chosen between time 0 and 
100. The periodogram, as said, is constructed with many more frequencies than 
needed, in such a way that joining its values a continuous-like line can be traced.

If we fix the signal-to-noise level at 10 and change the number N of samples, 
we obtain the three curves of Figure 13 (left). As we can see, the width of the 
peak, to first order, is invariant with respect to the number N. This is somewhat 
unexpected, because we may think that increasing the number of points would 
improve the precision. If we keep fixed the number of samples but change the
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Figure 13. Left: the width of a line does not depend on the number 
of samples. Right: the width of a line does not depend on the signal- 
to-noise ratio.

— S/N=10
— S/N=1

S/N=1/10

signal-to-noise ratio from 10 to 1 to 1/10 (Figure 13, right), it happens the same 
as before. Noise is also not a measure of precision.

We conclude that the width of a line of the periodogram does not depend on 
either the number of observations or their signal-to-noise ratio. If it is frequencies, 
we cannot give the reader a number plus minus an error.

38. What we can give instead is the false alarm probability of a peak. The idea 
is to compare the height of a peak against the peaks of the background; in other 
words, to quantify the significance of a peak. The false alarm probability of a 
peak is the probability that a dataset which is pure noise would have a peak of 
magnitude equal to or greater than that of the peak in question.

Scargle (1982) proved that if the data is pure Gaussian noise, then the values 
of the periodogram follow a y2 distribution with 2 degrees of freedom, that is, a 
decreasing exponential. Let’s call Z a value of the periodogram at an arbitrary 
frequency w. Then the probability density function of Z is

Vz^ = Prob(^ < Z < z + dz) = exp(—z)dz. (37)

Therefore, the cumulative probability is

Fz^ = Prob(Z < z) = Í pz(z')dz' = 1 — exp(—z^, (38)
Jo

so the statistical significance of a given power at a preselected frequency is

Prob(Z > 2) = 1 — Fz(z^ = exp(—zf (39)

In other words, it becomes exponentially unlikely that such a power Z or greater 
can be due to a chance noise fluctuation.

39. Now, let Zm be the value of the maximum peak of the periodogram. We are 
now choosing a specific value of frequency among N values, not any frequency. 
Then, the probability of that power being less than z will be that of one frequency 
but to the power of TV:

FzAFl = Prob(Zm < z^ = [1 - exp(-v)]A\ (40)
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and the statistical significance of such a power will then be:

Prob(Zm > 2) = 1 - FZm(z) = 1 - [1 - exp(—2)]^. (41)

40. Finally, we want a value of z such that a maximum with this value of z has 
a probability p of being obtained by chance. For this, we just need to solve for 
z in the above expression:

2 =-In [1 - (1-p)1/Ar] . (42)

Different values of k for different probabilities p can then be plotted along with 
the periodogram to assess the significance of the lines. In practice, the presence of 
the window will make the powers at adjacent frequencies not independent, so we 
have to estimate how many independent frequencies there are in the spectrum, 
and replace the N of the exponent with this effective number. A good choice is 
that proposed by Press et al. (1992), p. 570.
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Wavelets Analysis for Time Series
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Abstract. Wavelet analysis has been widely used to analyze time series 
and has countless applications in astronomy. Because of its characteristics 
it is a method that is well suited to approximate functions, eliminate 
noise, detect points of change, discontinuities and periodicities. In this 
article an introduction to the wavelet theory and its use in time series is 
presented. Numerical simulations and some real examples are developed 
in the software R.

Key words: Methods: statistical — Methods: analytical — wavelets.

1. Introduction

Fourier transform is widely used in signal processing and analysis and for its 
inherent characteristics it has had satisfactory results in the study of signals 
that are periodic and regular enough, but the same is not true when their spectra 
vary over time (non-stationary signals). If the function /(t) to be decomposed 
is a time series, and we think to analyze it, we have to take into account that 
the functions of the Fourier base are of infinite duration in time, but local in 
frequency. The Fourier Transform detects the presence of a certain frequency 
but does not provide information about the evolution in time of the spectral 
characteristics of the signal. Many temporal aspects of the signal, such as the 
beginning and end of a finite signal and the instant of appearance of a singularity 
in an instant of time, cannot be adequately analyzed by Fourier analysis. Even 
so, Fourier analysis is a cornerstone for the development of other mathematical 
and statistical theories including Wavelet analysis. In the following subsection 
we present the main concepts of Fourier analysis, which will be needed for the 
reading of the rest of the Chapter.

1.1. Some Concepts From Fourier Analysis

In this section we will review some concepts of Fourier analysis necessary for the 
following sections. Consider the space of all complex-valued functions f on R, 
such that f is absolutely integrable (ie: |/(t)|cZt < oo) and denote it as
T1(R) (Hardie et al. (1998)). For f G L^R), define the Fourier Transform of f 
by

Z
oo 

e^f^dx. (1)
-oo
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If /(£) is also absolutely integrable, define the Inverse Fourier Transform by

1 f'xM = Mj'iIfWi' (2)

at almost every point x. By extension, the Fourier transform can be defined for 
any f G L2(R) with If(x)pdx < oo.

Given a 27r-periodic function f on R, such that f G L2(0, 2tt) (JQ27r \f(x^\2dx < 
oo), it can be represented by its Fourier series by

M = £ ckeikx, (3)
k

where ck = ^ f^ f(t)e~lkxdx is named the fc-th Fourier coefficient. By period­
icity, this holds for all x G R.

Therefore there exists the basis of functions, ^e~,kx^kl in L2(R), for which we 
can write any function in L2(R) as an infinite linear combination of the members 
of this basis of functions. If we keep a finite number of terms on the right hand 
side of the equation (3), we will obtain an approximation of the function ffxf 
Due to the characteristics of the Fourier series (the functions sin(a;) and cos(t) 
in e-tkx are non-zero over almost the entire domain), a large number of terms 
in the series are needed to get a good approximation of f(xf In wavelet theory 
an alternative basis of functions is sought that has the property of being able to 
write any function in L2(R) as a series of the basis functions, but that they take 
values close to 0 outside a bounded interval, which allows a local adjustment in 
time and the use of few terms in the series to obtain a very good approximation 
of f(xY

Let {«a}agz denote an infinite sequence of real or complex-valued variables 
with the property that |«a|2 < oo what ensure that all the quantities we 
deal with are well defined. Then the complex function given by

OO
¿(r) = £ ake-M, (4)

k=—oo

is called the Discrete Fourier Transform (DFT) of VakHeZ, where r G R is 
a variable known as frequency (see Percibal & Walden (2000)). For the inter­
pretation of the formula in equation (4), |r| is the number of cycles that the 
sinusoidal curves in the real and imaginary terms of the function e-l27rrfc = 
cos^irrk^ — is'm(2Tvrk) (i.e. cos(27rrfc) and — siidTxrkf respectively), go over 
when k sweeps from 0 to 1. Any negative frequency r will map to some posi­
tive frequency when a physical interpretation is required (see Percibal & Walden 
(2000), Exercise [2.1]).

As intuition, if |A(?’)| is large (small), then the sequences {«a} and (e~127rrk} 
have a good agreement (bad agreement).

The sequence {«a} can be reconstructed or recovered from its DFT, A(?'), 
by '

ak = pA^e^dr, (5)
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where k E Z. The larger the value of |A(7’)|, the more important sinusoids of 
frequency r are in reconstructing {at}. If {«a} is a finite sequence for instance 
for k = 1, • • • , N, it is extended to k E Z by defining ak = 0 for all k < 0 and 
k > N. In this case, A(r) = E/Xi ake-12'Krk.

Filtering: In wavelets context it is often used the term “filter". Consider 
two infinite sequences of real or complex-valued variables, {«a} and {6a}, satis­
fying Ea^-oc M2 < °°, Ea^-oc IM2 < °°- The convolution of {afc} and {6a} 
is given by 

oo

(q*6)a= ^ aubk_u. (6)
u=—oo

This definition led us to the notion of filtering used in engineering. If we consider 
{«a} in equation (6) as a filter and {6a} as a sequence to be filtered, then their 
convolution, {(«*6)a}, is the filtered version of {6a}, filtered by the sequence {«a}. 
There are ‘low-pass’ filters that preserve low frequency components and attenuate 
high frequency ones; and there are ‘high-pass’ filters that make the contrary. 
Finally there is a cascade of filters, involved in wavelet coefficients computation 
from data (see section 3), which is nothing more than the consecutive application 
of a set of filters to a sequence, one after the other.

1.2. Short Time Fourier Transform
An intermediate step between Fourier and Wavelet analysis was the use of the 
Short Time Fourier Transform (STFT) to detect local phenomena in time. It per­
forms a time-dependent spectral analysis. The signal is divided into a sequence 
of time segments (depending on a window defined for this purpose) in which the 
signal can be considered as quasi-stationary and then the Fourier Transform is 
applied to each segment. Window functions are used to perform this procedure. 
To observe a signal over a finite period of time, we multiply it by a window 
function. The signal is divided into short fragments (short time intervals) delim­
ited in time, by means of a window function. The segments sometimes overlap. 
Through the individual spectral analysis of each windowed segment, a sequence 
of measurements or spectra is obtained, what constitutes the time-varying spec­
trum. The four most common window types are the Rectangular window, the 
Hanning window, the Hamming window and the Blackman window.

Three kinds of examples where STFT has been applied are presented below: 
two curves with marked periodicities that change according to the time instant 
in Figure 1, two curves without periodicities in Figure 3 and one curve with 
variable periodicity in Figure 4.

Figure 1 shows the STFT of two sinusoidal curves, a curve with three dif­
ferent periods and amplitudes:

/oC^) = sin(0.27ra;), Ji(t) = 1.5 sin(0.Sara;), f2(a;) = 2 sin(0.8ara;),

for the upper left panel, and

f3^ = sin(0.6a;), fEia) = 0.5sin(0.5ai), fs(aa) = 2sin(0.1a;),
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for the lower left panel. In right panels of Figure 1 the computation of the 
corresponding STFT is shown. Time-slices of length 80 are extracted from the 
vector (in case of short vectors the window size is chosen so that 10 windows fit 
in the vector). The shift of one time-slice to the next one is given by 24 (for short 
vectors the increment is selected so that 30 increments fit in the vector). The 
values of these time-slices are smoothed by multiplying them with a Hanning 
window function. For these obtained windows, the Fast Fourier Transform1 is 
computed. Then each window takes a segment of length 80 in time and is shifted 
by 24 which produces 414 calculations of the Fast Fourier transform. Therefore a 
matrix of 414 rows is produced where each row of the matrix contains the Fourier 
coefficients of one window which are plotted in a scale of 64 gray values, where 
white corresponds to the minimum value and black to the maximum. The right 
panel of the Figure 1 shows how the Fourier transform changes over time, which 
gives an indication of the change in periodicity over time. This is an advantage 
over the use of periodograms based on the Fourier transform in which the periods 
present are shown but without indicating their variability over time (see Figure 
2 where the Lomb Scargle periodogram of the sine wave 1 is displayed). With 
wavelet analysis it will be possible to construct a time-sensitive measure, of the 
STFT type, where on the ordinate axis the exact time is shown.

1Fast Fourier Transform: Calculating the DFT is time consuming and requires on the order 
of N2 floating point multiplications. As many of the multiplications are repeated by varying
the indexes, an efficient algorithm is used, called Fast Fourier Transform (FFT) which consists 
of a collection of routines designed to reduce the amount of redundant calculations. Different 
implementations of the FFT have different features and advantages. One of the algorithms used 
is the "split-radix" algorithm which requires approximately Arlog2(Ar) operations (Fischer- 
Cripps (2002)).

In the Figure 3 two curves and their STFT are shown. On the left upper 
panel a Gaussian white noise is plotted. This curve is completely random with 
no periodicities, therefore no time with a specific value is highlighted in its STFT 
(right upper panel). On the left lower panel a sample of an Autoregressive Mov­
ing Average (ARMA) process with parameters (2,2) is shown. This is a linear 
model for time series analysis and together with Autoregressive Integrated Mov­
ing Average ARIMA and Continuous Autoregressive Moving Average CARMA 
models have been used to model light curves in astronomy (Cáceres (2019), Ey- 
heramendy et al. (2018), Kelly et al. (2014)). The ARMA process is a stationary 
process with constant expectation and variance, so its representation contains 
no trend or periodicity. As a consequence, the STFT is less random than that of 
white Gaussian noise but with a time-varying Fourier transform. A curve with 
time-varying periodicity is plotted on the left panel of Figure 4. It can be seen 
that its STFT detects how the frequency decreases over time, although the exact 
time at which the changes occur or the exact trend of change is not visible due 
to the displacement of the windows used in the STFT calculation.

STFT allows that a certain location of a local phenomenon in a signal is 
detected. However, only the time interval in which the local phenomena occur 
will be known, since the location depends on the width of the window chosen. 
Moreover, the events will not be able to be differentiated or found if they are 
very close to each other, since it is not possible to distinguish different behaviors
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within the same window width. A mathematical tool to solve these problems is 
the Wavelet Transform.

In this Chapter, the theory of Wavelet analysis is described in Section 2 
including multiresolution analysis. Section 3 describes the Cascade Algorithm 
and the discrete wavelet transform while Section 4 is devoted to continuous 
wavelet transform and its applications. Finally, in Section 5 we present our 
conclusions.

2. Theory of Wavelet Analysis

We can say that the theory of the analysis of the wavelets began with Mr. Joseph 
Fourier (1807), with his theory of frequency analysis, today often referred to as 
Fourier analysis. After 1807 and from the development of the Fourier convergent 
and orthogonal systems, the notion of frequency analysis led to scale analysis. 
The first mention of the wavelets appears in an appendix of the thesis of A. Haar 
(1909). The wavelet theory was developed mainly in the 80’s by Meyer (1986), 
Daubechies (1988), Mallat (1989) and others.

Wavelets are used in a large number of applications, among them: astron­
omy, acoustics, nuclear engineering, sub-band code, signal and image processing, 
neurophysiology, bioinformatics, genetics, music, magnetic resonance imaging, 
classification of words in a text, optics, fractals, seismic turbulence prediction, 
radars, human vision, statistics (time series, correlations, stochastic processes, 
point processes, non-parametric regression, regression with census data) and 
mathematical applications such as: in pure frequency identification, eliminating 
signal noise, detecting discontinuities and cutting spots, detecting self-similarity 
(fractals), compression of data.

In this Chapter the use of wavelets focuses on their application to time series 
(i.e.: sequence of observations indexed on an ordered set of indices I which can 
be a discrete set of values such as integers or a subset of the real line, based on 
an independent variable t E I\ The variable t can be taken as time, depth, or 
distance along a line, among others. Examples of set of indexes are I = (0, +co), 
that is, all t > 0 are possible indexes, and I = {0,1,2, • • • , n}, where n can be 
any integer greater than 2.

The main points of the theory of wavelet analysis are developed to later an­
alyze its use in applications through approximations, scalograms built from the 
wavelet transform, signal reconstruction, among others. The Wavelet Transform 
is efficient for the local analysis of locally changing and non-stationary signals 
and, like the Windowed Fourier Transform2, assigns a time-scale representation 
to the signal. The time aspect of the signals is under consideration. The main 
difference with STFT is that the Transformed Wavelet has multiresolution anal­
ysis with variable windows. The analysis of higher range frequencies is done 
using narrow windows and the analysis of lower range frequencies is done using 
wide windows (Poularikas, 2010).

2Short Time Fourier Transform



132 A.Christen

Sine wave 1

Time

STFT of Sine wave 1

STFT of Sine wave 2Sine wave 2

Time Time Windows

Figure 1. Examples of STFT. On the left panels, it can be seen two 
different sinusoidal curves and on the right panels their STFT. First, 
time segments of a fixed length are extracted from the data vector. 
This window is moved along the time axis by a fixed amount possibly 
smaller than the window size, which may produce an overlap between 
the time segments. The values of these time intervals are smoothed by 
multiplying them by a specified window function. For the windows thus 
obtained, the fast Fourier transform is calculated. For the data in the 
figure, segments of 80 time units were used. They were incremented 
by 24 units to obtain the next segment, which produced overlapping 
segments, yielding 414 windows. For each window 64 Fourier coefficients 
were calculated. The figure shows: on the x-axis the 414 windows and 
64 cells on the vertical axis of each window which were colored with 
a gray scale according to the magnitude of the Fourier coefficients. In 
the figure only the cells with gray colors are observed, the rest are only 
white. The dark regions in the graph correspond to high values of the 
coefficients at the particular time/frequency location.
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Lomb-Scargle Periodogram

Figure 2. In the figure the Lomb Scargle periodogram of Sine wave 1 
is shown. The frequencies of the curve 0.1 and 0.4 are clearly evidenced 
and more weakly the frequency 0.25.

Wavelets (small waves) are families of functions which, if they are translated 
and dilated, allow us to obtain an orthogonal base of functions in L2(R). A linear 
combination of the elements of this base of wavelet functions is used to represent 
a signal /(i).

The classical Fourier analysis has been widely used in the problem of recon­
structing a function / from dilations of a fixed sinusoidal function x H- e2™, 
when writing f(x') = J e2lT^x f^df,. The Fourier transform, /(£), is considered 
the amount of sinusoidal oscillation e27”^ present in the function /. Sinusoidal 
function bases are also used in Fourier series.

In the same way the wavelet basis of functions allows us to reconstruct the 
original signal through the inverse Wavelet Transform. There are several base 
wavelet functions, depending on the chosen family: Haar, Daubechies, Morlet,: 
Symmlets, among others. Depending on the selected wavelet family, a different 
base function is used (first brick in the construction) and a certain base of func­
tions is obtained which will allow the wavelet analysis to be performed. The 
main advantage of Wavelet analysis is that it is not only local in time, but also 
in frequency.
This feature allows using the continuous wavelet transform to detect an event in 
the data, either the period of a time series, a change point in the series, a dis­
continuity in a density function, and to know the moment (time) or abscissa at 
which it occurs. For example, knowing the time interval during which a detected 
period is present in the brightness measurements in a light curve, the moment 
when the flow of a river changes drastically, the day when an economic variable 
produces a change in its modeling.

Another feature of a wavelet functions basis is that any function in the 
function space L2 can be decomposed as an infinite sum of functions in the 
wavelet basis, as with the Fourier series, but because of their great flexibility to 
approximate functions efficiently only a small number of summands are needed 
to produce very good approximations. The latter is because wavelet functions 
vanish outside a bounded interval and the basis of functions is formed by a count-
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SFTF of white noiseWhite noise

Figure 3. Examples of STET: The upper panel shows a curve of 500 
data points from a Gaussian white noise and its STET. In the lower 
panel, the plots show the curve of a sample from an ARMA (2, 2) process 
and its STET. For the data in the upper right panel of the figure, 
segments of 50 time units were used. They were incremented by 16 
units to obtain the next segment, which produced overlapping segments, 
yielding 29 windows. For each window 64 Fourier coefficients were 
calculated. The figure shows: on the x-axis the 29 windows and 64 
cells on the vertical axis of each window which were colored with a 
gray scale according to the magnitude of the Fourier coefficients. The 
dark regions in the graph correspond to high values of the coefficients 
at the particular time/frequency location. In the lower right panel, 
segments of 6 time units with increments of 2 units were used, yielding 
29 windows.
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Figure 4. On the left panel, it can be seen a curve with periods 
varying over time and on the right panel its STFT, built from segments 
of 80 time units with increments of 24 units, yielding 39 windows on 
the x-axis. On the vertical axis of each window 64 cells were colored 
with a gray scale according to the magnitude of the Fourier coefficients. 
In this figure the dark regions, corresponding to a high magnitude of 
the Fourier coefficient, sweep across an interval as they move through 
time.

able number of dilations and contractions of a wavelet function called “parent", 
stretches and squashes of those functions and translations of all of them. This is 
equivalent to having bricks of various sizes and widths that can be placed under 
any house and that adding up all the volumes will give exactly the same volume 
of the house.

In the next section we will be introduced to multiresolution analysis, the 
main feature of wavelet analysis, which will allow us to define a basis of wavelet 
functions in L2(R) with which we can represent any function /(x) in L2(R) 
through an infinite countable linear combination of the basis.

2.1. Multiresolution Analysis

Wavelets can be considered as a basis of functions generated by dilations and 
translations of a simple function which, in general, is not sinusoidal. They are 
connected to the notion of multiresolution analysis (MRA) in which the objects 
(signals, functions, data) can be examined using several levels of approach, as if 
zooming in and out. In both cases we can obtain relevant information about the 
object. As an example, suppose we are looking at a house, the observation can 
be made from a large distance from where only the basic shapes and structure 
can be distinguished (if it has a garage, the shape of the roof); or one can observe 
from a closer distance and various other characteristics of the house will appear 
(the door is made of hardwood, for example).

The basis function will be generated from a basic function that is usually 
called parent wavelet or scaling function, which in turn allows us to build another 
basic function that we will call mother wavelet or wavelet function. The repre-
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sentation of a function /(t) will be done through two summands: the sum of the 
dilations and translations of the father wavelet, ip(xY will give us information 
about the general, coarse aspects (a kind of smoothing) of the /(t) and the sum 
of the dilations and translations of the mother wavelet, V'C^); will give us infor­
mation about the particular aspects and details (like a zoom) of the function. 
Each term in the second summand will add more clarity on the specific features.

In this section some basic concepts such as wavelet father, which provides 
smoothing, and wavelet mother, to describe the details, are defined to reach the 
multiresolution analysis definition. In the following it will be assumed that the 
function to be analyzed is a function of time t.
For </? G L2(R), k G Z, x G R, we denote ^okC^) = ^(x — fc) the family of 
translations of 92 and we denote

^■fc^) = ííip^x — k), j,k G Z,

the family of translations and dilations of <p with the indexes k and j respectively. 
The functional sub-spaces {V^Jjez, Vj Ç L2(R) are defined by:

• for j = 0:

Vo = < g g £2(R): gk^ = 52 ^^"" k^ 52 N2 < +o° 'I k k ,

that is, Vo is the subspace spanned by the translations of <^(t) by k, 
^{x — kf

• and for j G Z:
Vj = \h^ = gÇ^ : g GVoy

Then h^x-) G V^ if h^x-) = ^ cwY^x — k) f°r {c/J such that 52 lcA-|2 < 
k k

+oo, or, Vj1 is the subspace spanned by the functions {j?(231x — kY^^x.

Therefore </? generates the sequence of subspaces {V}}. The sequence {V}} 
is called multiresolution analysis if

1. {<^ok} is an ortonormal system in L2(R),

2. the subspaces are nested, that is,

^C^+ijGZ, (7)

3. every function in L2(R) can be obtained as a limit of a sequence of functions 
in U Vj, that is, every function f G L2(R) can be written as a series of 

j>o
elements in |J Vj.

j>o

In this case, </? is called Wavelet father. Another sequence {W^JjeNo is 
considered such that Wj is the orthogonal complement of Vj Ç Vj+i, Wj =
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^■+1 © Vj, then U Vj = Vo U (W © Vo) U (V2 © Vi) • • • U (Vj+1 © Vj) • • •. Then 
j>o

OO ~

U Vj = Vq © © (Y)-n © 15') is a direct sum of sub-spaces that completes A2(R) 
j>0 J " ‘ *

leading to
Q 00

L2(R) = Vo © © Wj,
3=0

therefore any function /(t) in L2(R) can be written as a linear combination of 
functions in Vq and {Wj}. For each j G No, let -0 be a function such that its 
translations and dilations, ^jk = í^2^^ac — k^, k G Z}, are an orthogonal basis 
of Wj. Then, for instance, the translations {V’oa/t) = 4’{x~k^k is an orthogonal 
system of Wq, this system is orthogonal to Vo and Vi = Vo © Wq is the subspace 
spanned by the system {{©om}m, {V’ofc}^}, where ©om(*T) = ©(t — m) for all m­

As a consequence, each function /(t) can be represented as a convergent 
series given by

00

/(t) = ^oy<pok(Vi + EEPjk^jk^^i (8)
kEZ 3=0kEZ

where
ak = j f(x)vok(x)d,x, Pjk = y f(x)^jk(x)dx. (9)

According to the function f(x') sometimes it is necessary to start with a 
subspace Vj0 with jo > 0, in that case, the first function in the sum, <pok(x^, is 
replaced by <pjok(x^ and the index j starts at Jo > 0 in the right term of equation 
(8). ' '

The representation of /(t) as an expansion of translations and dilations of 
functions tp and -0 is called wavelet expansion and -0 the Wavelet mother.

Each Wj in the sequence of sub-spaces {Wj} represents a resolution level of 
the multiresolution analysis. There are several levels j of resolution, what gives 
rise to its name.
The resolution level means a zoom level that is performed on the function, so 
each one will allow you to see details at different scopes. Thus the function is 
decomposed into an initial smoothing, given by the parent wavelet in the first 
term of the right-hand side of eq. (8) and different levels of details that are added 
according to the value of the level j in the second term of the right side. The 
greater the value of j, the greater the level of resolution and the finest details 
will be visible, which will be represented by the j-th term.

An example of wavelet system is the Haar system. The wavelet father and 
wavelet mother are given by

©(t) = 7(o,i] (t) , ^(x) = -7[0ii](t) + I^i^ (x) , (10)

respectively, where

r / \ f 1 if X G A
Ia (t) - I 0 q X^A
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and the interval (a, 6] is the set of real numbers between a and b, including b but 
not a. The basis of functions for the Haar wavelet system are:

VOk^ = {^(0,1] lx - k^kEZ,

M^ = 2^/2 (z(|il] (2^ - k) - /[o,|](2^ - k^ ,

for wavelet father and mother respectively, where j, k E Z, j > 0. We can observe 
that {<Fok(^)}kGZ is an orthonormal basis (ONB, i.e.: a basis of orthogonal and 
normalized vectors) in

bo = V1^ € -^2(R) : h^ is constant on (k, k + 1], k E Z},

^jk(^ = 2j/2<p(2jx - k)}kez is an ONB in

Vj = V1^ € -^2(R) : h^ = g^xY g^ E Vb},

Vj Ç Vj+i and Vj = V}-i®Wj_i, where Wj is spanned by ^Yjk-t^kEZ- Finally,
L2(R) = Vb ® Wo ® H® ® • • • H® ® • • •. ' '

By way of illustration,

1. {®ofc(*T)} is an ONB of Vq.

2. W = ^hiV) € ^2(R) : h(x') = g(2a;),g(T) E Vb} = {^(t) E T2(R) : 
h^ is constant on (^, ^^], k E Z} and it is spanned by the ONB 
{mM, YokY^ = ^[o,|] (® - k) - Içi^ (x - k^.

3. The functions <pik(^ = 2T/2<p(2x — k) for k E Z span W and can be written 
in terms of {<Fok(^)} and {V’ok(T)}> since I® = Vb ® Wq. For instance:

r V2 1
‘FioW = V2I^^x^ = -y(J(o,i] (®)-^0,i](®)+^(i,i] (®)) = -/iGfoo-vW,

</?n(a;) = V2Z(0,i](2a; - 1) = "^(^oo + V^oo).

A suitable property of the Haar wavelets is that they are cancelled out of a 
limited interval. Unfortunately, Haar wavelets are not continuously differentiable 
which limits their applications (see Figure 5). There are wavelet families with 
compact support (vanish out of an interval) and wavelet families defined over 
the whole line. Among the former wavelet families are Daubechies, Coiflets, 
Symmlets. Some examples of the last ones are the Battle-Lemarié and Morlet 
wavelets.

Father and mother wavelets can be defined from some of the properties of 
their Fourier transforms (see Hardie et al. (1998)).
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Figure 5. Some representations of Haar wavelet. On the top panel it 
is shown Haar father wavelet for (a) j = 0, k = 0, (6) j = 0, k = 1, (c) 
j = 1, k = 1/2. On the bottom panel it is shown Haar mother wavelet 
for (d) j = 0, k = 0, (e) j = 0, k = 1, (c) j = 1, k = 1.

2.2. Obtaining a Wavelet Expansion
In this section the conditions about functions </? and /’ that guarantee the exis­
tence of a wavelet system are formulated. That is to say, what characteristics 
should have so that ipo^. is an orthogonal and normalized system, the Vj are 
nested, the span of |J Vj is equal to L2(R), 4’jk is an orthogonal and normalized 

j
system of Wj, etc. This section follows closely Hardie et al. (1998).

Properties on ¿p, the Fourier transform of <^, are sought that guarantee the 
validity of the necessary and sufficient conditions for the wavelet expansion:

1. Vvok^k G Z} is an orthonormal system (ONS)

2. Vj C Ej+i, j G Z

3. U Vj is dense in L2(R) (i.e.: the linear combinations of functions in |J Vj 
j>0 j>0
span all the functional space L2(R)).

4. {^’(^ — k^, k G Z} is an ONB in Wq.

In what follows functions <p, that satisfy that there is a constant M > 0 
such that 52 ¡^(.t — k)| < M for x G R — A, will be considered, where A is a 

kez '
null measurement set.
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The following results that allow characterizing the father wavelet and the 
mother wavelet from properties of their Fourier transform can be demonstrated 
(see Hardie et al. (1998)).

(a) Set p E I?(RY The system {^oa*? k E Z} = {<^(t — kY k E Z} is an ONS if 
and only if,

^2|0(£ + 27rfc)|2 = 1, (ID

almost everywhere (a.e.), where p is the Fourier transform of the function 
y?.

(b) The sub-spaces ^Vj, j E Z}, spanned by translations and dilations of p, are 
nested Vj C Vj^i,j E Z, if and only if, there exists a 2tt - periodic function 
m-o G L2(0,2tt) such that

Moreover, mo(<)|2 + |w(€ + tt) |2 = 1 a.e.

(c) If p satisfies items (a) and (6) above then |J Vj is dense in L2(R).
j>0

(d) If p is a father wavelet that generates a MRA in L2(R), m-o(^) is a solution 
of equation (12) then

Y’^ = ™i

is the Fourier transform of a mother wavelet 0, where m-i(^) = m-o(^ + tt)c ^ 
and the bar represents the complex conjugate.

In summary, to construct a father wavelet p for a MRA, sufficient conditions 
on its Fourier transform p should satisfy the following restrictions:

where m-o G L2(0,2tt) is a periodic function of period 2tt such that

|w(O2 + |w(€ + <)|2 = 1,
(14)

_ mo(O) = 1,

where the last restriction in equation (14) is deduced of eq. (12) after adding 
the condition |0(O)| = | J p(t)dt\ = 1 for the father wavelet.
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Since Vq C 14, then y E 14 and it can be written as a linear combination of 
the system {V2<p(2x — k)}, an ONB of the subspace 14- Therefore, there is a 
sequence {/i/4 such that

ip(x') = V2 ^2 hk\p(2x — kf hk = V2 / ip^ip^x — kyix, (15) 
fcez J

with £ |/ifc|2 < 00 and the constraints
fcGZ

1. 52 hkhk+21 = dot

2. TyE^l- 
v k

where ¿0/ = 0 if I ^ 0 and <5q¿ = 1 if Z = 0. By the same argument the mother 
wavelet satisfies _

4(zr) = VT^Xk.y^ - k), (16)
k

where Xk = (-l^^hi-k*
Taking Fourier transform to both sides of left equation in (15) we obtain 

y = ^ ^k hkW^k^ and by eq. (12) we have that

™oK) = 4E'“e"y <17>
k

If the wavelets considered are compactly supported (i.e.: they vanish outside 
a bounded interval), the sums in eqs. (15), (16) and (17) have a non-zero number 
of terms. These relations allow us to determine the coefficients in eq. (9) of a 
function in its wavelet representation in eq. (8) through a linear transformation 
given by the product of a matrix by a vector.

Compactly supported wavelets

Some of the wavelet families with compact support are the Daubechies, 
Coiflets and Symmlets. We briefly describe each of them.
Ingrid Daubechies, to whom we owe the original construction of Wavelets with 
compact support (Daubechies (1988)), proposed to take mo(£) such that

mo(4)|2 = cn j sin2N Hxykx. (18)

where the constant cn is chosen to produce m-o(O) = 1. For such functions 
m-o(^) the coefficients ^hk^ are tabulated (see Daubechies (1988) or Hardie et al. 
(1998)). Wavelets constructed from the function mo(£) satisfying eq. (18) are 
called Daubechies Wavelets and they are denoted D2N or Db2N.
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For N = 1, we have D2 where cn = | and

I 1 P z x , 1 + COS^
|w(O = 2 J^ =----- 2----- ■

Choosing mo(7J = 1+1 ‘€ we obtain

V^ = lini H -(1 + e 27 ) =-------- ---—,
?2^og x x Z

3 = 1

hence Daubechies father wavelet D2 matches with Haar father wavelet, <^(t) = 
I^x G (0,1]}.

The supports of Daubechies father wavelet and mother wavelet are included 
in the intervals [0, 2N — 1] and [—N + 1,7V], respectively. Besides, Daubechies 
mother wavelet has null m-moment (i.e.: J xiric (t) dx = 0) for m = 0,..., N — 1.

Beylkin et al. (1991) proposed a new class of wavelets with essentially the 
same good properties of the Daubechies wavelets and, in addition, the father 
wavelet has some zero moments. If the father wavelet has certain null moments 
the wavelet coefficients could be approximated by evaluations of the function 
f (7) at discrete points:

with Tjk small enough. This can be a useful property in applications.

This class of wavelets was called Coiflets Wavelets and is denoted CK. To 
build the Coiflets wavelets, Beylkin et al. (1991) consider m-o(^) of the form

2K

Pl A,

where
K—l

PiA=
k=0

and F^ is a trigonometric polynomial chosen such that |m-o(^) |2 +1 m-o(^ +tt) |2 = 
1. The supports of Coiflets father wavelet and mother wavelet are included in 
the intervals [—2K, 4/< — 1] and [—4/< + 1, 2K\, respectively.

According to Daubechies (1992) the only symmetric wavelet with compact 
support is the Haar system (father wavelet). The family of Symmlet Wavelets is 
made up of wavelets for which mo(£) is chosen to be close to symmetry. They are 
denoted by SN, where N is the order of the wavelet. Symmlet mother wavelet 
has null m-moment (i.e.: J xin i/ (t) dx = 0) for m = 0,..., N — 1. The support 
of the father wavelet and mother wavelet are the intervals given by [0, 2N — 1] 
and [—N + 1,7V], respectively.
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3. Cascade Algorithm

Some recursive formulas are presented that will allow the calculation of the 
wavelet coefficients sequentially (see Hardie et al. (1998)). The procedure is 
called Cascade algorithm (or pyramidal). It was proposed by Mallat (1989).

This method (Hardie et al. (1998)) is used only with wavelet bases that van­
ish outside a finite interval and built from the function mo(£) = ^ hkWlk^ 

(see eq. (17)) where hk are coefficients of real values with only a finite number 
of non-zero values. This assumption is satisfied by the families of Daubechies, 
Coiflets and Symmlets wavelets, among others.

Given a function f(tj, the coefficients «jk =< f^jk >, 3jk =< fv^’jk > 
satisfy for j, k E Z the relationships:

Ojk = ^ hi-2k.aj+i,b (19)
k

3jk = '^^l-2kCtj+1'1 (20)
k

where Xk = (—l^^hi-k and ^hk^ are the coefficients of mo(£).

Indeed, by multiresolution analysis,

Pjk = 22 I flyc^^x — kjdx

= 2^ y2^s / f^V^^x — k^—s^dx

= 2"^ y2^s I f^V^^1® — 2k — s^dx

= ^sO'j+i,s+2fc = ^-2^3+1,i.

s I

The relation (19) is obtained in a similar way. The cascade algorithm is 
defined by both equations (19) and (20).

Only a finite number of coefficients a^k are non-zero in each level j. There­
fore if the vector of coefficients, y = {a^z} is known for a certain level ji, it is 
possible to recursively rebuild the coefficients «jk, 3jk for levels j < ji, with the 
use of the recursive equations (19) and (20).

If the procedure stops at level jo, the vector of resulting wavelets coefficients 
w = ^ajokV {^ofc},..., ^Pji-ykW can be computed by

w = Wy, (21)

where W is a matrix.
It is possible to invert the cascade algorithm to obtain the values of the 

coefficients y, starting from w by the recursive scheme:
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aj+l,s = ^ hs-2k.aj,k + ^ Xs-2k3j,k, (22)
k k

allowing j to vary from j'q to ji — 1.

3.1. Discrete Wavelet Transform
Given the initial values ^a(K, k), k = 0,..., 2K — 1} the Discrete Wavelet Trans­
form (DWT) recursively calculates the coefficients a(j, fc) and 3(3 fc) for 0 < 
k < 23 — 1 and 0 < j < K — 1, in the following manner:

3The remainder of dividing x by y is usually expressed as xmody.

a(j,k) = hi a(j + 1, (I + 2k) mod 23+1), (23)

3(j,k) =£A/ a(j + 1,(1 +2k) mod 23^). (24)
i

where (I + 2k) mod 2^+1 denotes3 the remainder of dividing (I + 2k) by 2j+1. 
Therefore the DWT is just a composition of linear orthogonal transformations 
presented by the recursions (23) and (24). These recursions can be extended to 
k E 7 and these extensions are periodic, in the sense that a(j, k) = 0(3, k + 
23), P(3, k) = 3(3 k + 23) for all k E Z.

The Discrete Inverse Wavelet Transform is defined in a similar way but with 
the data periodically extended. It starts with the vectors:

Mjm k), k = 0,..., 23o _ 1}> W()) k3 k = 0) ., 2jo _ 1}

and its periodic extensions are denoted by {«(jo, k), k E Z}, ^Uo^ k), k E Z}.
Then the vectors (a(j,s),s = 0, ...,23 — 1} are computed until level 3 = 

K — 1, following the recursive equations:

5(j + 1, s) = y2 ks-ík ã(3 k) + y2 Xs-2k 3(3 k),s E Z, (25) 
k k

a(j + 1, s) = 5(j + 1, s), s = 0,..., 2jl — 1. (26)

4. Continuous Wavelet Transform

The continuous wavelet transform is a wavelet transform where the dilation and 
translation parameters, named a and b in this case, vary continuously over R with 
a 7^ 0 (Daubechies (1992)). Given the wavelet 3 E Z2(R) such that J3(t)dt = 0 
and a function f E Z2(R), the Continuous Wavelet Transform (CWT), Tf, of 
f(t), with a 3 0 and b E R is defined by
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(TH(a^ (27)

The expression (27) computes the inner product in L2(R) of the function / 
against the family of functions, {V’a’b}> indexed by the parameters a, b, defined 
by

<’\S) = H^^) (28)
a

where a ^ 0 and b G R. The inner product is defined by < /, g >= J dtf(t)g(t), 
where /(t) is the complex conjugate of J If).

When a changes and b remains fixed, ,4’a’b(s^ = laM^’if) covers different 
frequency ranges. Changing the parameter b allows moving the location in time 
(x-axis or time-axis), every ■^a'b(s') is located around of s = b.

If -0 6 T2 and that satisfies the following condition of admissibility

Z
OO

d^WO2 <oo, (29)
-oo

where '0 is the Fourier transform of -0 (see eq. (1)), then the function / can be 
reconstructed from its CWT using the equation:

/=c-^ r r ^^ < /, ^ > r-\ (so) 

<7—00 <7—00

where 0a,{,(s) = |a|-1/20(^), and <,> denotes the inner product in I?. The 
constraint (29) is satisfied if 0 E L1(R) (i.e.: J |/(t)|dt < oo) and f 0(t)dx = 0 
since under this assumption -0 is continuous, then to get C^, < oo is sufficient 
that '0(0) = 0, or equivalently, J i/’(x)dx = 0.

As an example consider the Haar mother wavelet ^(x^ given in equation 
(10). For a > 0 we have

and the CWT
1 / fb+a \

(r/)(a,6) = ^== / f(t)dt — f(t)dt].
VN wb+i Jb )

For a < 0 the CWT is developed in a similar way. In the context of CWTs, 
some of the most frequently used wavelet families are real and complex Mor- 
let wavelet, real and complex Mexican hat wavelet, real and complex Shannon 
wavelet, among others.

The Morlet Wavelet or Gabor wavelet (Daubechies (1992)), is a continuous 
wavelet depending on parameter a. Its Fourier transform, 0, is a displaced 
Gaussian, tuned somewhat so that 0(0) = 0,

-0(0) = 7T ' ^-(WÇo)' /2 _ e-^ +Ç0)/2^ , (31)
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^(t) = 7T 4 ie ^ot _ e Çq/2^ e i , (32)

/ \l/2
where £o is often chosen as tt (— 5.336 or £o = 5 for simplicity. The
Morlet wavelet for £o = 5 is shown in Figure 6. This wavelet can be found in its 
complex version or in a real-valued version.

Figure 6. Morlet mother wavelet for £ = 5 is shown in blue colour.

The Mexican hat wavelet or the Ricker wavelet is the second derivative of 
the Gaussian e-^/2 and is defined by

^^ = ^^ ^^ ~ ^^ ^^

after normalization to get ||'0||2 = 1 (T2(R)-norm) and -0(0) > 0. Its plot is rem­
iniscent of a cross section of a Mexican hat. The complex Mexican hat wavelet is 
formulated in terms of its Fourier transform given by 0(£) = 2 ^Ivr^-'-^^e^aCf^^^

The Fourier transform of the Shannon wavelet (Mallat (1998)) is the follow­
ing:

^i^\ = / e~^ if £ G [-27b -7rl u K 27rl
[ 0 otherwise

and the continuous wavelet is '4’^ = ^^^Ã/í)^ ~ ^^t1-!/^^ • This wavelet 
has infinite continuous derivatives with decay as | at infinity due to the discon­
tinuities of 4’^ at £ = ±7T and £ = ±2tt.

4.1. Scalogram
The scalogram, a graph of the absolute value of the CWT, \Tf |, as a function of 
time, is used for different types of analysis. Color levels (high values of \Tf\ are 
in red) or gray levels are used (high values of \Tf\ are in black, zero in white) and 
c 1 is plotted on the ordered (y-axis). Some applications of the scalogram include
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period detection in time series, change point detection, function discontinuity 
detection, signals recovering, among others. In all cases, the wavelet transform 
can detect the location in time of the event found.

The CWTs of 4 time series examples are shown below. They were done with 
the package Wavecomp in R 4 that uses Morlet wavelet family. In the scalogram, 
a range of colors appears related to the p-value obtained from a hypothesis test 
that is carried out via simulations:

4 https: // cran.r-project.org/web/packages/WaveletComp/WaveletComp.pdf

Hy. There is no joint periodicity.

When Hq is rejected, it indicates a great possibility that the periodicity is 
present in the data set. Given a level of significance, for example 0.01 or 0.05, 
the null hypothesis will be rejected if the p-value is smaller than the level of 
significance chosen. The scalogram shows the CWT values for each time and 
period in a range of colors from blue to red and a black contour line where the 
maximum values of the CWT are found for each instant of time. This black line, 
like the red regions, is found at the times and periods of highest wavelet power 
levels, where Hq is rejected.

The first example is a sinusoidal data set with a period P=50. In Figure 
7 you can see, from left to right, the original signal, the scalogram (with the 
period on the y-axis) and the reconstruction of the signal from the CWT. In this 
example ’Time’ and ’Index’ on the x-axis correspond to the step of time of the 
curve. In the middle panel, you can see that the CWT detects the period of 50 
of the signal.

In Figure 8 the second example is showed: a signal with a variable period 
between P = 20 and P = 100. In this figure, from left to right, the original 
signal, the scalogram (with the period on the y-axis and the time step on the 
x-axis) and the reconstruction of the signal from the CWT can be seen. In the 
center panel of the figure, it is shown how the scalogram detects the variable 
period of the signal, its tendency and the reconstruction of the signal on the left 
panel is quite accurate. We can compare the performance of the scalogram with 
the STFT showed on the right panel of Figure 4.

In Figure 9, a signal with two periods: P = 30 and P = 80, both along 
all the range, is shown. In the figure, from left to right, the original signal, the 
scalogram (with the period on the y-axis and the time step called ’Index’ on the 
x-axis) can be observed. On the right panel, it is easy to see two zones in red 
with a black line across indicating the two periods present in the signal.

Figure 10 shows a signal with two periods: P = 30 and P = 80, in separate 
intervals of time. On the right panel, it is simple to see two intervals of time 
with two different periods for the signal. The CWT can detect the instant of 
time when the change of period occurs.

In the four examples presented, some of the potentialities of the CWT can 
be observed: it can detect one or more periods present in the curve and indicate 
the time interval in which the detected period influences the behavior of the 
time series as well as it can detect the points of change where the change between



148 A.Christen

periods occurs. All of these are regarding an evenly sampled time series. Because 
of this, for 55 Cyg light curve (from TESS mission) a partition of the data is 
made and they are analyzed separately obtaining the scalograms in Figure 12. 
Although each partition still has irregularly sampled data, the time differences 
between the measurements are quite similar allowing the use of the Wavecomp 
package which is for equidistant time series.
Figure 12 shows two significant periods (solid black lines). A first period pi that 
starts with a value 2 < pi < 4, grows in time and stands at p <~ 4 at the end 
of the time interval (right panel); and a local in time period p = 2 that appears 
during the middle time of the first part of the data (middle panel) and decreases 
to a value just below 2 during the second part (right panel).

The graph is seen divided into two regions, one with brighter colours and 
the other with fainter colours. It corresponds to the cone of influence, described 
in Lenoir & Crucifix (2018), the wavelet analysis extends a little at the edges 
of the time series, due to the wavelet support (values where the wavelet is not 
null) then a part goes beyond after the last point of the time series, or before 
the first point of the time series. Due to this, one half cone is removed from the 
left end and another from the right end, from the area under analysis, producing 
the region with fainter colors. This situation is present in each of the plots but 
is more evident in this figure.

For data with time differences between more irregular measurements it is 
recommended to look for other alternatives. Some of them are listed below. 
Developments have been made by interpolating the data to obtain equispaced 
data (see for instance Thiebaut & Roques (2005)) or in other cases the con­
tinuous wavelet transform has been used on the raw data (Lenoir & Crucifix 
(2018)). Foster (1996) proposed the use of the weighted wavelet Z transform 
to face this problem. In his work the author proposed an adaptation of wavelet 
analysis for irregularly spaced data called Weighted Wavelet Z transform (WWZ- 
transform). It consists of analyzing the data through projections of the Morlet 
mother wavelet, which add up with some specific weighting. Foster (1996) showed 
the efficiency of the method in some signals although its limitation consists in 
detecting periods and amplitudes when the gap in data is larger than the pe­
riod to be detected. WWZ transform proved good performance discerning in 
frequency and time, period and amplitude of long-period stars in presence of 
unevenly data.

According to Lenoir & Crucifix (2018), interpolation procedures can signifi­
cantly affect the results especially when hypothesis testing is used. The authors 
proposed a method to analyzed unevenly time series by means of the scalogram 
of wavelet analysis without interpolation of the data. The authors proposed 
to use projections of the continuous Morlet mother wavelet, without weighting, 
and implemented his methodology in the WEAVEPAL software (developed on 
Python 2, Lenoir & Crucifix (2017)). The method seems efficient as long as the 
length of the intervals without observations is little variable. It is also observed 
as a limitation the inability to detect periods when the gap is larger than the 
period to be detected.

Tarnopolski et al. (2020) argue that irregular data makes it difficult to cal­
culate certain magnitudes and introduces spurious peaks in the power spectral
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density. To solve this problem the authors propose to interpolate the data to 
make them regular using a method based on the ARMA time series model called 
MIARMA. "

Figure 7. The original sinusoidal signal with period 50, the scalogram 
and the reconstruction from the CWT are shown from left to right 
panels.

— original
----reconstructed!

200 400 600 800 1000

Figure 8. The original sinusoidal signal with a variable period from 
20 to 100, the scalogram and the reconstruction from the CWT are 
shown from left to right panels. Center panel shows how the scalogram 
manages to capture the variable period.

5. Conclusions

In this paper we presented a brief summary of the theory of wavelet analysis, 
multiresolution analysis, and the continuous wavelet transform along with some 
applications in periodic time series to detect periods or points of change through 
simulations and real data. The R software was used for the implementation of 
numerical simulations and the wavelet analysis.
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Figure 9. The original sinusoidal signal with two periods (30,80) 
along the curve is shown on the left panel. The corresponding scalo- 
gram with the evidence of the two periods along all the range of the 
signal is shown on the right panel.

6. R Codes

Some of the R codes used in this Chapter are presented in this section. Note 
that the ’+’ sign is used in some commands to indicate that they continue on the 
next line. When running them in R you must select all the lines corresponding 
to the command, deleting the ’+’. For example, for the command:

plot(t,haar3, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5),
+ col=’blue’)

put in R without ’+’ and select all the sentences in order to run it:

plot(t,haar3, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’)

6.1. STFT
Figure 1:

install.packages(5 el0715)
library(e!071)

tl<-seq(0,100,0.01)
length(tl)
xl<-sin((0.2*pi)*tl[1:3000])
x2<-l.5*sin(0.5*pi*tl[3001:4000])
x3<-2*sin((0.8*pi)*t1[4001:10001])
x<-c(xl,x2,x3)
zl<-sin((3/5)*t 1 [1:3000])
z2<-0.5*sin(0.5*tl[3001:6000])
z3<-2*sin((1/10)*tl[6001:10001])
obj<-c(zl,z2,z3)
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Figure 10. The original sinusoidal signal with two periods, F = 80 
for the first part of the curve and F = 30 for the final part is shown on 
the left panel. The corresponding scalogram with the evidence of the 
two detected periods and the time interval involving each one is shown 
on the right panel.

200 400 600 800 1000

par (mfrow=c (2,2))
plot(x, type=’l’, main=’Sine wave 1’, xlab=’Time’, ylab=’Signal’) 
y<-e!071::stft(x)
plot(y, xlab=’’, ylab=’’, main=’STFT of Sine wave 1’, ylim=c(0,15))
plot(obj, main=’Sine wave 2’, xlab=’Time’, ylab=’Signal’,type=’lines’) 
z<-e!071::stft(obj)
plot(z, xlab=’’, ylab=’’, main=’STFT of Sine wave 2’, ylim=c(0,15))

Figure 2:

install.packages(’lomb’) #Lomb Scargle periodogram 
library(lomb)
Isp(x, times=t1,ofac=5, xlim=c(0,0.5))

Figure 3:

install.packages(’ el071’) 
library(el071)

x<-rnorm(500)
y<-el071::stft(x)
obj<-arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
+ sd = sqrt(0.1796))
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Figure 11. The scalogram of the same sinusoidal curve of Figure 7 
with period 50 where 50% of data was removed. In presence of irregular 
sampled data the scalogram underestimates the period.

z<-e!071::stft(obj)

plot(x, type=’l’, main=’White noise’, xlab=’Time’, ylab=’Signal’)
plot(y, xlab=’’, ylab=’’, main=’STFT of white noise’)
plot(obj, main=’ARMA(2,2)’, xlab=’Time’, ylab=’Signal’)
plot(z, xlab=”, ylab=”, main=’STFT of ARMA(2,2)’)

Figure 4:

install.packages(’WaveletComp’)
library(WaveletComp)

w = periodic.series(start.period = 20, end.period = 100, length = 1000)
w = w + 0.2*rnorm(1000)
wy<-el071::stft(w)

par(mfrow=c(l,2))
plot(w, type=’l’, main=’A signal with variable periods’, xlab=’Time’, ylab=’Signal’) 
plot(wy, xlab=’’, ylab=’’, main=’STFT of the signal’, ylim=c(0,20))

6.2. Haar Wavelet
Figure 5:

t<-seq(-2,3,0.01) 
length(t)
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Figure 12. The original light curve of 55 Cyg is shown on the left 
panel. After splitting the signal in two parts the two corresponding 
scalograms are shown on the right panels.
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par (mfrow=c (2,3))
title(’Wavelet Haar’)
# Plot 1: Wavelet Haar father: J=0 k=0. ---------------------------- ORIGINAL
haarl<-c(rep(0,200), rep(l,100), rep(0,201))
plot(t,haarl, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’,
+ ylab=”, xlab=’(a)’)
abline(v=0)
abline(h=0)

# Plot 2: Wavelet Haar father: j=0 k=l
haar2<-c(rep(0,300), rep(l,100), rep(0,101))
plot(t,haar2, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’,
+ ylab=”, xlab=’(b)’)
abline(v=0)
abline(h=0)

# Plot 3: Wavelet Haar father: j=l k=l/2
haar3<-c(rep(0,250), rep(2,25), rep(0,226))
plot(t,haar3, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’,
+ ylab=”, xlab=’(c)’)
abline(v=0)
abline(h=0)

# Plot 4: Wavelet Haar mather: j=0 k=0. ----------------------------ORIGINAL
haar4<-c(rep(0,200), rep(l,50), rep(-l,50),rep(0,201))
plot(t,haar4, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’violet’,
+ ylab=”, xlab=’(d)’)
abline(v=0)
abline(h=0)

# Plot 5: Wavelet Haar mather: j=0 k=l
haar5<-c(rep(0,300), rep(1,50), rep(-1,50),rep(0,101))



154 A.Christen

plot(t,haar5, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’violet’,
+ ylab=’’, xlab=’(e)’)
abline(v=0)
abline(h=0)

#Plot 6: Wavelet Haar mather: j=l k=l
haar6<-c(rep(0,300), rep(2,25), rep(-2,25),rep(0,151))
plot(t,haar6, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’violet’,
+ ylab=’’, xlab=’(f)’)
abline(v=0)
abline(h=0)

6.3. CWT and Scalogram
This section is based on Roesch & Schmidbauer (2018).

Figure 7: A series with a constant period, period equal 50

install.packages(’WaveletComp’) 
library(WaveletComp)

set.seed(l)
xl = periodic.series(start.period = 50, length = 1000) 
xl = xl + 0.2*rnorm(1000) # add some noise
plot(xl, type=’l’, xlab=’Time’) 
date=l:1000

my.data <- data.frame(date=date, x = xl) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
#scalogram 
wt.image(my.w, color.key = "quantile", n.levels = 250, 
legend.params = list(lab = "wavelet power levels", mar = 4.7)) 
#red zones with black lines corresponds to more significant periods

#recover the significant periods and the average period 
ta<-my.w$Period[which(my.w$Ridge==l,arr.ind = TRUE)[,1]] 
mean(ta)

#reconstruct the signal using wavelets
reconstruct(my.w, plot.waves = FALSE, Iwd = c(l,2), 
legend.coords = "bottomleft", ylim = c(-1.8, 1.8))
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Figure 8: A series with a variable period.

install.packages(’WaveletComp’) 
library(WaveletComp)

x = periodic.series(start.period = 20, end.period = 100, length = 1000) 
x = x + 0.2*rnorm(1000) 
plot(xl, type=’l’, xlab=’Time’)

my.data <- data.frame(x = x) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
wt.image(my.w, n.levels = 250, 
legend.params = list(lab = "wavelet power levels")) 
#The variable period is observed in the scalogram 

#reconstruction 
my.rec <- reconstruct(my.w)

Figure 9: A series with two periods.

install.packages(’WaveletComp’) 
library(WaveletComp)

set.seed(l)
xl <- periodic.series(start.period = 80, length = 1000) 
x2 <- periodic.series(start.period = 30, length = 1000) 
x <- xl + x2 + 0.2*rnorm(1000)
plot(x, type=’l’, xlab=’Time’)

my.data <- data.frame(x = x) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
wt.image(my.w, n.levels = 250, 
legend.params = list(lab = "wavelet power levels") )

#reconstruction
reconstruct(my.w, plot.waves = TRUE, Iwd = c(l,2), 
legend.coords = "bottomleft")
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Figure 10: A series with two periods in different times.

install.packages(’WaveletComp’)
library(WaveletComp)

set.seed(l)
xl <- periodic.series(start.period = 80, length = 1000) 
x2 <- periodic.series(start.period = 30, length = 1000) 
x <- c(xl , x2) + 0.2*rnorm(1000)
plot(x, type=’l’, xlab=’Time’)

my.data <- data.frame(x = x) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
wt.image(my.w, n.levels = 250, 
legend.params = list(lab = "wavelet power levels") )

Figure 11: An unevenly sampled data.

install.packages(’WaveletComp’)
library(WaveletComp)

set.seed(l)
xl = periodic.series(start.period = 50, length = 1000)
xl = xl + 0.2*rnorm(1000) # add some noise
date=l:1000

#Deleting some data to produce gaps
obs <- sample(seq(xl), 0.5*length(xl)) # 50% gaps
xll <- xl [sort(obs)]
datel <- date[sort(obs)]

par(mfrow=c(1,2))
plot(xl ~ date, pch=".", cex=2)
plot(xll ~ datel, pch=".", cex=2)

par(mfrow=c(1,1))

my.datall <- data.frame(date=datel, x = xll) #with unevenly data 
my.wll <- analyze.wavelet(my.datall, "x", 
loess.span = 0,
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dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10)

wt.image(my.wll, color.key = "quantile", n.levels = 250, 
legend.params = list(lab = "wavelet power levels", mar = 4.7)) 
#In presence of unevenly data wavecomp subestime the period.

reconstruct(my.wll, plot.waves = FALSE, Iwd = c(l,2), 
legend.coords = "bottomleft", ylim = c(-1.8, 1.8)) 
#Be carefull, Wavecomp analyze the serie sticking the gaps

7. Notation

Some notation used in the article is the following:

R is the set of real numbers,

Z is the set of integer numbers,

© direct sum of two or more linear sub-spaces, that is, a new subspace spanned 
for generators of each sub-space in the direct sum where each is orthogonal 
to any other.

© of a subspace included in another subspace, if B C A, then A © B is the 
orthogonal complement of B within A,

IMI2 2-norm of functions, ||.||2 = J^ |f(t)|2dt,

L2(R) Hilbert space of real functions with finite 2-norm.
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Abstract. Stellar pulsations can cause variability in the brightness of 
the star as well as in the shape and radial velocity of photospheric lines. 
To determine the periods and modes of pulsations, two different but com­
plementary observational techniques are in use: photometric light curves 
to measure the brightness variations, and spectroscopic time series to an­
alyze the time-dependent motions at the stellar surface. In the first part 
of this Chapter, both observing techniques and their sources of errors and 
limitations are presented. In the second part, an overview of the various 
space and ground-based missions for both photometry and spectroscopy 
is given. Considering all the currently available and newly planned instru­
ments, the future for research in variable and pulsating stars is bright.

Key words: asteroseismology — stars: oscillations — stars: atmo­
spheres

1. Introduction

Pulsations modify the observable properties of stars. The motion of the surface 
elements cause variations in both the velocity and the stellar flux. Changes in flux 
are primarily due to temperature variations1 and can be traced by photometric 
monitoring. The velocity variations are detectable in spectroscopic time series.

Most stars pulsate in more than one mode and observations provide only 
the combined effect of all modes simultaneously. A simple example is shown in 
Figure 1, in which two sine-curve modes with different period, amplitude and 
phase superimpose to the total observable signal shown in the right panel. The 
combined signal can be either a photometric light curve or a radial velocity 
curve. The aim of any data analysis is to deconvolve the observed signal into the 
contributions of each individual mode thereby determining their properties, i.e., 
frequency, amplitude, and mode identification. These are the fundamental sets 
of data in asteroseismology.

To disentangle the various contributing modes, suitable frequency analysis 
techniques are needed, which are described in other Chapters of this book. Here, 
the focus is on another aspect: The quality of the data used for the analysis. 
Because both photometry and spectroscopy require different instrumentation and

159
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Time Time Time

Figure 1. Example of two periods (left and middle panels) with differ­
ent frequencies, amplitudes, and phases that superimpose (black path) 
to the total, observable signal (right panel). To extract information 
about pulsations, the observed signal needs to be deconvolved into the 
individual contributions (blue path).

observing conditions, these two observing modes are described separately. But 
before coming to the details, a few general terms need to be introduced and 
discussed as well, which are relevant for both photometry and spectroscopy2.

2Parts of this Chapter are based on and follow the excellent textbook of Aerts et al. (2010).

Precision The most relevant parameter in asteroseismology is precision. As 
we will see later (Section 4), asteroseismology and the search for and characteri­
zation of exoplanets post the same demands on instrumentation. Consequently, 
space missions as well as high-duty-cycle ground-based projects dedicated to one 
of them, also delivers data for the other scientific branch. And the need for 
extremely high precision is the ultimate driver for instrumental development to 
satisfy these requirements.

During the past ~ 50 years the precision in astronomical photometry has 
increased from ~ 0.01 mag to a few //mag. Equally, the precision in radial ve­
locity determination has increased from ~lkms^ to 10s of cms *. In both, 
an improvement by four orders of magnitude has been achieved. Each observer 
should make every effort to minimize errors and to improve the precision be­
cause only the best data will deliver meaningful results. As a matter of fact, the 
higher the precision in both photometry and spectroscopy the larger are the sets 
of identified frequencies.

Duty Cycle Besides precision, the duty-cycle of observations is of great im­
portance. Generally speaking, the duty-cycle is a measure for the fraction of the 
observing time spent on the variability of the target. Ideally, one would wish for 
a duty cycle of 100%, because every gap in the observations can lead to confusion 
in frequency determination. Therefore, space missions are best suited for follow­
ing the variability of objects. But these have enormous costs. For ground-based 
observations, the duty-cycle is usually much smaller, typically less than 50% for 
single site observations for a short time span under good weather conditions.

Time The principal data of asteroseismology are time series, either in pho­
tometry (light curve) or in spectroscopy (radial velocity curve). Time series



Observing Techniques and Missions 161

allow us to derive asteroseismic frequencies. For reliable results, the time of the 
observations must be known to high precision.

In asteroseismology normally the Coordinated Universal Time (UTC) which 
depends on the Earth’s rotation is used as reference system3. But the UTC is 
not a uniform timescale because the length of the day has an annual variation 
of about a millisecond. Moreover, long term drifts appear as well due to the 
tidal interaction between the Moon and the Earth. Therefore, a sort of “leap 
seconds” are introduced to keep UTC in phase with the atomic time. For the 
most precise studies, however, a constant, “ephemeris time” scale without leap 
seconds is needed.

3The reader interested in the complexity of the precise time is referred to the website of the 
U.S. Naval Observatory: https://www.usno.navy.mil/USNO/time

Depending on the desired precision, the effects of the Earth’s motion about 
the Sun, or about the solar system barycenter are removed and times are con­
verted to Julian Dates. The term “Julian Date (JD)” was introduced by Joseph 
Justus Scaliger in 1583 at the time of the Gregorian Calendar reform, who set the 
starting point to noon Universal Time (UT), 1 January 4713 BCE (before cur­
rent era). Because of this historically chosen zero point, JD is nowadays a huge 
number, and astronomers often opt to use the “Modified Julian Date (MJD)”, 
which is defined as JD-2400000.5, which reduces the number and also eliminates 
the half-day offset. Another convention is the “Heliocentric Julian Date (HJD)”, 
which provides the observation time corrected to the solar center by accounting 
for the disturbances introduced by the orbit of Jupiter. For many purposes in 
astronomy and asteroseismology based on single site data this is a sufficiently 
precise timescale.

Better precision is achieved when the observation time is corrected to the 
barycenter of the solar system (“Barycentric Julian Date (BJD)”), whereas the 
ultimate precision is obtained when the leap seconds are subtracted. This is 
called the “Barycentric Julian Ephemeris Date (BJED)”. BJD or BJED should 
be used for long-term (years) data sets as well as for data collected from multiple 
sites.

Every astronomer has to make sure that the time base(s) are correct, es­
pecially when merging data sets from different sources and sites. An easy time 
trap when being careless with the use of the time base can lead to the detection 
of a planet in the signal which is, however, not related to any new discovery, but 
just due to the Earth’s orbit.

2. Photometry

The most widely used tool to study stellar variability is by measuring precisely 
the changes in stellar intensity. This is done by means of photometry.

The quality of detectors has drastically changed over the past centuries. 
Observations started with the human eye which can provide visual observations 
with an accuracy of about 0.05-0.10 mag. Such kind of data are sufficient for 
the study of large amplitude pulsators, e.g Mira variables.

https://www.usno.navy.mil/USNO/time
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A considerable improvement in precision was achieved with photographic 
plates. This technology started in the 19th century and dominated the measure­
ment of stellar brightness until the CCD era started in the 1990s and revolution­
ized astronomical observations. While photographic plates are still occasionally 
in use, CCDs are nowadays ubiquitously established and will be the predominant 
method of measuring stellar intensity and its variations in the 21st century.

While ground-based photometry has reached precisions of 10s of /zmag, space 
photometric missions are capable of //mag precision. Considering that the mean 
magnitude of a star may be known only with an accuracy of a few millimag, the 
variations in stellar brightness, and hence the amplitudes of the pulsations, can 
be determined to precisions 1000 times better.

2.1. Sources of Error in Photometry
A number of effects exist that can cause errors to the photometric measurements. 
Some are due to the limitations of the technical equipment, others are because 
of restrictions set by the observing conditions.

Photon Statistics The process of photon detection has a normal distribution. 
Consequently, if we denote with N the number of detected photons, the statistical 
error is given by VÑ, and the signal-to-noise ratio goes as S/N = N/VÑ = VÑ. 
In principle, the noise level can be reduced by improving the signal, i.e., by 
increasing the integration time. However, very long integrations for a highly 
reduced error due to photon statistics is not useful in case the signal that is 
supposed to be detected has short periods. And many pulsating stars, such 
as pulsating white dwarfs, roAP stars, solar-like oscillators, or sdB stars have 
rather short variability timescales but are faint objects. For those targets, a 
large telescope can help in increasing the signal, but it is still limited by photon 
statistics.

Atmospheric Sources of Errors - Extinction Variations In the absence 
of clouds, the extinction of the Earth’s atmosphere is a further factor influencing 
and disturbing photometric observations. It measures the amount of starlight 
that is removed along the line of sight as a function of the airmass. By defini­
tion, Earth’s atmosphere has an airmass (A) of unit 1 for observations towards 
the zenith, and increases towards the horizon, because of the longer light path 
through the atmosphere. If one approximates the atmosphere with a plane­
parallel slab model, the airmass for the observation of an object under the zenith 
distance angle z would simply be X = sec(^). To account for the curvature of 
the Earth’s atmosphere, a polynomial approximation has been derived and is 
generally in use (Hardie, 1964),

X = sec(£)-0.0018167(sec(£)-l)-0.002875(sec(£)-l)2-0.0008083(sec(£)-l)3.

This relation is precise for zenith angles up to ; = 85°, which is much closer to 
the horizon than the angle under which observations are usually carried out. In 
many cases it is even sufficient to use just the first two terms of this equation. The 
reduction of the observable starlight due to the airmass is thus just a function of 
the zenith angle.
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However, in reality the sky transparency is always variable in time and in 
both zenith angle and azimuth. The reason is, that the atmospheric conditions 
depend not only on the airmass, but also on other parameters, such as temper­
ature and humidity, and on the levels of dust and aerosols in the atmosphere. 
The timescales of these variations in sky transparency are on the order of 15 min 
and longer. These transparency variations thus cause an atmospheric noise that 
depends on frequency and that has higher amplitudes at lower frequencies. It is 
referred to as “pink” noise. To account for this variable atmospheric extinction, 
in particular in photometric observations of stars with pulsation periods (much) 
longer than about 15 min, it is required to observe also non-variable standard 
stars for comparison.

A cloudless night with no highly variable dust or aerosols in the atmosphere 
is usually called “photometric”.

Atmospheric Sources of Errors - Scintillation With the term scintillation 
one refers to the variable refraction in the atmosphere, which makes the stars 
“twinkle” when observed with the naked eye. The Earth’s atmosphere consists 
of many gas cells. Each of them has a radius of 10s of cm, and the gas within 
each cell has slightly different values of pressure, temperature and humidity thus 
causing a slight variation in refraction from cell to cell. The light path from the 
top of the atmosphere down to the telescope hence passes through many cells, 
and at each of them it changes slightly its direction. Moreover, the positions of 
these cells are not fixed but depend on and travel with the wind conditions, so 
that the total amount of light that reaches the detector is variable. In this way, 
scintillation causes a “white” noise in the signal, i.e. a noise with no frequency 
dependence. It is thus the dominant source of error in a photometric night for 
periods shorter than the 15 min limit set by the atmospheric extinction.

The noise caused by scintillation follows also (as photon statistics) a normal 
distribution, because the light simultaneously passes through many independent 
cells, and its level drops with the square root of the number of gas cells along 
the light path. As the number of scintillation cells increases with increasing 
telescope aperture, the amount of noise decreases. Big telescopes are therefore 
better suited for observations of pulsating stars with scintillation as the limiting 
noise source.

Instrumental Sources of Noise The technical equipment used for photo­
metric observations has also sources of errors. Some are periodic, others random.

Every CCD has pixel-to-pixel sensitivity variations. For the high-quality 
CCDs that are nowadays in use these variations can still be on the order of 1%, 
which is too high to be ignorable. Other sources of CCD noise are dark currents, 
bias, and read-out noise. They can be accounted for by collecting additional 
calibration images along with the science frames.

• Bias images. These have zero second exposures. They are taken to remove 
any internal bias structure across the chip such as the amount of counts 
accumulated during the reading out of the CCD.

• Flat-field images. Flats contain the information about the pixel-to-pixel 
variation. They are obtained by illumination of the entire CCD with a 
constant light source.
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Figure 2. Example set of photometric observations. The raw image 
needs to be corrected for bias and flat frames to achieve a reduced image 
suitable for reliable intensity measurements.

e Dark images. Darks are long exposure images taken with the shutter closed. 
These are only necessary in case of a considerable dark current in the CCD. 
Most modern CCDs have no significant dark current so that dark images 
are usually not required anymore.

Examples of the calibration images (bias and flat) and their impact on the science 
frames are shown in Figure 2 for demonstration purpose. For a comprehensive 
description of CCDs and data reduction the interested reader is referred to the 
Handbook of CCD Astronomy by Howell (2006).

For the most precise photometry, it is essential to keep a stellar image fixed 
at the sub-pixel scale to avoid that stars are moving over the CCD, but no tele­
scope can track to that precision. Therefore, autoguiding is needed. The use 
of autoguiding also eliminates another instrumental effect which might cause an 
artificial periodic signal. This is the periodic error in the right ascension drive in 
the telescope which, in the absence of autoguiding, injects a signal into photo­
metric time series with the frequency of the telescope drive. Typical drive periods 
are 2 or 4 siderial minutes. They can cause confusion with stellar periods for 
stars pulsating in that frequency range such as roAP stars, solar-like oscillators, 
sdBV stars, or pulsating white dwarfs. To identify and eliminate such periodic 
instrumental signals it is necessary to have a standard star observed, ideally in 
the same field of view as the target.



Observing Techniques and Missions 165

2.2. Filters

Photometric observations provide information about the stellar brightness in a 
certain wavelength range, defined by the used filter. Many different filter systems 
exist, and the interested reader might inspect the work of Bessell (2005) for an 
overview of the various broad and narrow band systems as well as of the ob­
servational complications with standard photometry. The three most commonly 
used systems are Johnson UBVRI, Strõmgren uvby, and the Sloan Digital Sky 
Survey (SDSS) u'g'r'i'z' filters (Fukugita et al., 1996).

Every filter has its defined wavelength coverage, transmission curve, and 
sensitivity curve. Therefore, the use of identical filters is important when com­
bining data from different facilities, or when organizing multi-site campaigns, 
because the amplitudes and phases of stellar pulsations are wavelength depen­
dent. Changes in stellar brightness caused by oscillations are predominantly due 
to temperature variations, which manifest themselves particularly in the blue 
spectral range. Consequently, the monochromatic amplitudes of the pulsations 
due to temperature variations are highest in the blue as well.

One might interpret photometry through filters as sort of spectroscopy, just 
at very low resolution. But we need high-resolution spectroscopy to extract 
additional and viable complementary information about the pulsation properties 
of stars.

3. Spectroscopy

Spectroscopic observations provide an important tool, not only for asteroseis- 
mology, but for all fields of astronomy and astrophysics. With respect to stellar 
astronomy they are used for spectral classification, for the derivation of stellar 
parameters such as effective temperature and gravity, as well as for the deter­
mination of the atmospheric chemical abundances. Spectroscopic data are also 
vital to derive the mass-loss rates of stars, and to characterize circumstellar en­
vironments. Moreover, whenever spectroscopic time series are at hand, they can 
provide information on stellar multiplicity or the presence of a planet, or they 
can be used to analyze and classify stellar variability either due to surface spots, 
magnetic fields, or pulsation activity.

High-resolution spectroscopic data, suitable for asteroseismology, can to 
date only be acquired with ground-based facilities. Different types of spectro­
graphs exist, ranging from linear single order to echelle systems, but they all 
usually consist of a collimator, a prism or grating for dispersion, and a CCD 
camera. While every instrument needs its own reduction procedure, for which 
often an instrument pipeline exists, the basic steps are the same for most spec­
trographs.

As for photometry (Section 2), calibration images need to be taken along 
with the target frames. These are again bias, flats, and eventually dark frames. 
However, in contrast to photometry, also calibration lamp spectra need to be 
secured. An example of how the required observational sets look like in both 
single order and echelle spectroscopy is shown in Figure 3 and 4, respectively, 
and detailed descriptions of spectroscopic observations and data reduction can 
be found in Massey & Hanson (2013).
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Figure 3. Example set of spectroscopic single-order observations. 
These are: bias (top left), flat (top right), and comparison lamp spec­
trum (bottom left) which are needed along with the stellar spectrum 
(bottom right) for correction and calibration.

Figure 4. Example set of spectroscopic observations taken with an 
echelle spectrograph. Shown are the same set of observations as for 
single-order spectroscopy: bias, flat, calibration lamp and stellar spec­
trum with the different spectral orders projected parallel to each other 
on the CCD. Note that in the shown calibration lamp spectrum several 
intense lines are saturated causing bright artifacts.

In brief, the raw images need to be corrected for dark current (if available), 
then the bias needs to be subtracted and the images have to be divided by 
the master flat, which is created from a number of flats taken throughout the 
observing night (depending on stability of the spectrograph). Then the stellar 
spectrum has to be extracted whereby the sky background is subtracted. For 
echelle data, each spectral order needs to be identified and extracted separately 
thereby correcting for the so-called blaze function. Afterwards, the spectrum 
needs to be wavelength calibrated by using the comparison lamp spectrum. Fi-
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nally, the wavelength calibrated spectrum needs to be shifted to the solar system 
barycentric reference frame.

Any changes in pressure, temperature or humidity within the environment 
in which the instrument is located lead to small shifts in wavelength. Modern 
spectrographs are therefore placed in a room with stable conditions. Neverthe­
less, observations taken during a night can still display some wavelength drifts on 
a timescale of hours. These drifts cause a low-frequency noise in the amplitude 
spectrum of the radial velocity variations, in analogy to the low-frequency noise 
in photometry due to extinction variations.

For exoplanet studies a precision in radial velocity measurements down the 
level of ms-1 or better is required. In this case, it is advised to implement an 
iodine cell into the light path. The iodine imprints its rich I2 molecular line 
spectrum onto the stellar spectrum for very accurate wavelength calibration. 
The downside of using an iodine cell is that it requires detailed modeling of the 
molecular lines and their deconvolution from the stellar spectrum. Even worse, 
it reduces the S/N of the spectrum, because the iodine reduces the incoming 
starlight by about a factor of two. Therefore, this method of wavelength calibra­
tion is usually not used for asteroseismology.

Figure 5. Examples of final, normalized spectral pieces of the pulsat­
ing B supergiant (BSG) 55 Cyg (top) and two slowly pulsating B (SPB) 
stars (middle and bottom). The upper two stars are of early B-type, the 
bottom star is a late-type B star. Data have been taken with the single 
order spectrograph at the Perek 2-m telescope at Ondfejov Observatory 
providing a resolution of R ^ 18 000 around 450 nm.

An example of final, normalized spectral pieces of three pulsating stars is 
shown in Figure 5. The upper two stars are of early B-type, whereas the bottom 
spectrum is from a late B-type star. Noticeably, the spectral appearance changes 
with effective temperature and luminosity class of the star. Therefore, the choice 
of suitable lines for the analysis depends on the spectral type of the star. But 
also on the stellar rotation, which can lead to significant broadening and, hence, 
to blending of adjacent lines. When analyzing time series, one should make sure 
to focus on deep, unblended lines, ideally of metals.

A further important parameter is the S/N value of the spectra. The higher 
S/N, the more accurately the line profile parameters can be measured. However,
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to achieve a high S/N in high-resolution data for faint and short-period pulsators 
is a further challenge and not always achievable, requiring compromises.

3.1. Line Profile Variations

The profile of a spectral line contains a variety of information about the physical 
conditions within the line-forming region. While emission lines provide insight 
into the parameters of stellar winds and circumstellar matter, stellar absorption 
lines carry (besides temperature, gravity and stellar rotation) the information 
about the dynamical conditions within the atmosphere, that is at the surface 
of the star. Any change in the atmospheric kinematics, e.g., due to non-radial 
pulsations, causes temporal variations in the shape and center of gravity of line 
profiles. Nice examples of computed line-profile variations of stars pulsating in 
various non-radial modes can be seen, e.g., on John Telting’s webpage4.

4 http:/ / staff.not.iac.es/~jht/science/

To identify pulsations in spectroscopic time series, the profile variability can 
be visualized by various means as shown in Figure 6 for the example of ¡3 Cep. 
Overplotting the normalized profiles of a time series of an individual photospheric 
line (second panel) often shows already whether the profiles are constant and 
symmetric or not. In the shown example, the profiles vary in three ways: they 
change their shape and their intensity, and they move in wavelength, so that 
they seem to swing from one side to the other. When plotting the intensity 
variation of the lines in a gray-scale plot as a function of time (third panel), a 
sine-curve like variability pattern appears. Alternatively, one might compute the 
mean of all observed lines (top panel) which can then be subtracted from each 
individual line profile to obtain the residuals (fourth panel). These residuals can 
also be represented in a gray-scale plot as a function of time (bottom panel) to 
highlight the positive and negative deviations from the mean profile. The use of 
such gray-scale images has been invented by Gies & Kullavanijaya (1988). These 
plots guide the eye and in such way facilitate the identification of any features 
or patterns traveling across the profile.

However, not every periodically varying profile is automatically an indication 
of stellar oscillations. Other effects can cause variability as well. For instance, a 
companion (either star or planet) leads to periodic variability. But in this case, 
only a change in radial velocity is seen. Companions do not alter the shape of 
the absorption lines. A different scenario leading to line profile variability is due 
to spots caused by temperature or abundance patterns on the stellar surface. 
These spots are usually not (or at least not on short timescales) changing their 
sizes and distributions over the surface, so that the observable profile variability 
is due to (and follows) stellar rotation, and hence just a single frequency (and its 
(sub(harmonics) is detected. In contrast to these scenarios, stellar pulsations are 
typically multi-periodic and create highly complex variations in both radial ve­
locity and profile shapes. Consequently, the analysis of spectroscopic time series 
of variable stars provides an important diagnostics for distinguishing pulsating 
stars from other objects with variabilities. Furthermore, it is an essential tool 
for a proper characterization of the pulsation behavior of oscillating stars.

staff.not.iac.es/%7Ejht/science/
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Figure 6. Representations of line-profile variability for the example 
of the SiinA 4574 line in the pulsating star 3 Cep. From top to bottom: 
mean line profile of 620 observations - a subset of 54 normalized spectra 
- gray-scale image of intensity variations - 54 residual spectra (having 
the mean spectrum subtracted) - gray-scale representation of residuals. 
Figure is taken from Telting et al. (1997).

3.2. Specific Requirements for Spectroscopy

Before concluding this section on spectroscopy, the specific requirements for the 
data sets should be emphasized. Most important for the detection of the rather 
small deviations in shape and radial velocity from an unperturbed, symmetric 
line profile is the high quality of the data with respect to both resolution and 
S/N level.

The resolving power, R, at a given wavelength A (for example, the laboratory 
wavelength of the investigated spectral line) is defined as R = A/AA. The 
resolution should be at least 30 000. Certainly better are spectra with R > 50 000.
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The same principle holds also for the signal-to-noise ratio: the higher the better. 
However, the higher the resolution and the fainter the object, the longer is the 
integration time to achieve adequately high S/N values. Therefore, in reality 
one has to find the best suitable combination for the object that is supposed to 
be studied. As sort of a guideline, one should opt to sample the observed line 
profile in wavelength with about 50 points and to achieve a S/N value greater 
than 200.

But there are more constraints than just resolution and noise level. To 
unveil the signature of oscillations, there should be at least ten measurements 
distributed over each pulsation cycle. This can be achieved by observing over 
many cycles for a long time base, which also guarantees that at least some of 
the cycles are densely covered for a decent frequency spectrum, in particular 
for stars with multi-periodic oscillations and complicated beating patterns. For 
the data to be considered sufficiently time-resolved they are required to cover at 
least two points per cycle for all harmonics needed to reproduce the shape of the 
variability pattern which is usually the radial velocity curve.

Furthermore, the data also need to have a good temporal resolution. This 
means, that the integration time should not exceed about 1-2% of the pulsation 
period. Only in this case, the measurements can be considered as instantaneous. 
Otherwise, the signal appears to be smeared out, an effect which then needs to 
be simulated and corrected for.

Considering all these requirements, one should make sure to carefully adjust 
the observational setup and strategy according to the specific needs for the target 
under investigation and the research goal that one wishes to achieve.

Having introduced all the targeted demands for the observational data, we 
now turn to the various missions dedicated to (or useful for) the acquisition of 
data for different types of variable stars.

4. Space Missions

4.1. Observations of Variable Stars - How It All Started
The High Precision PARallax Collecting Satellite (HIPPARCOS5) of the Eu­
ropean Space Agency (ESA) was one of the most important and pioneering large 
surveys of variable stars. During its 3.5 years of operation from 1989 to 1993, the 
parallaxes of about 120 000 bright stars in the solar neighborhood were measured 
with unprecedented precision of 2 mas, and their proper motions with an accu­
racy of 2 mas/year. This accuracy has been achieved from about 100 individual 
observations per star that have been randomly distributed over the mission life­
time. The observations of HIPPARCOS have been performed with a broad-band 
white-light filter covering the wavelength range 400 — 800 nm.

5https: // www.cosmos.esa.int/web/hipparcos/home

The satellite has been equipped with an auxiliary star mapper (the Tycho 
experiment) that pinpointed many more stars. Its accuracy was lower, but still 
good enough to determine the parallax and proper motion of a million fainter 
stars with an accuracy of 30 mas (per year). The total number of measured 
objects has been compiled in the Tycho 2 Catalogue, which has been completed

http://www.cosmos.esa.int/web/hipparcos/home
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in 2000. It lists the total of 2 539 913 stars, and includes 99% of all stars down 
to magnitude 11.

Besides the position and proper motion measurements, the major achieve­
ment of the HIPPARCOS mission was the discovery of a few thousand new 
periodically variable stars that have been reported in the Catalogue of Periodic 
Variables and another few thousand variables without a clear dominant periodic­
ity, listed in the Catalogue of Unsolved Variables. Numerous new variables have 
been discovered with periods of the order of days. Such stars are difficult to find 
from ground. The results from the HIPPARCOS mission particularly impacted 
the studies of slowly pulsating B (SPB) stars, for which HIPPARCOS increased 
the number by a factor of ten (Waelkens et al., 1998), and it doubled the number 
of 7 Dor stars (Handler, 1999). Moreover, HIPPARCOS also discovered 343 new 
eclipsing binaries and thus doubled their number (Sõderhjelm, 2000).

The new catalogs of variable stars triggered extensive follow-up long-term 
ground-based photometric and spectroscopic campaigns. The brightest stars of 
each class were monitored to study their pulsational behavior and to derive the 
general properties of the objects.

4.2. Follow-up Surveys of Variable Stars
It took ten years after the end of the HIPPARCOS mission before the next 
satellite, dedicated to the observations of variable stars, was sent to space. An 
overview of all relevant space missions and their (actual or planned) duration 
periods is depicted in Figure 7.

Figure 7. Space missions suitable for variable star research, even if 
their prime objective was sometimes quite different.

MOST The Canadians were the next to launch a satellite called Microvari­
ability & Oscillations of Stars (MOST6). It was Canada’s first space telescope,

6http://most, astro, ubc.ca//index, html

http://most
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and the first spacecraft dedicated purely to the study of asteroseismology of a 
variety of pulsating objects.

MOST consisted of a visible-light dual-CCD camera, fed by a 15-cm aperture 
Maksutov telescope. One CCD observed the science target, while the other was 
used for star-tracking with a pointing accuracy better than 1". With its broad­
band (300 nm) filter centered at 525 nm, MOST performed ultra-high-precision 
photometry measuring brightness variations down to the mmag level.

With its suitcase size (65 cm x 65 cm x 30 cm) and a weight of just 54 kg, 
this microsatellite was given the nickname “Humble Space Telescope”. It was 
launched in June 2003 and was intended to be a one-year mission to observe a 
total of ten bright (V = 0.4 —6.0 mag) stars for a period up to 60 days. However, 
MOST succeeded to survive for more than 15 years and was in operation until 
March 2019. During this period it delivered precise data for more than 5000 
objects.

CoRoT The next mission, initiated and led by the French Space Agency 
(ONES) in conjunction with ESA and other international partners, was enti­
tled Convection, Rotation and planetary Transits (CoRoT7). It was designed to 
investigate stellar pulsations and to search for exoplanets.

'https://corot.cnes.fr/en/COROT/index.htm

8 https: // www.nasa.gov / mission_pages/kepler / overview/index, html

The telescope was equipped with a 27 cm diameter lens and a wide-field 
camera observing in visible light and with a field of view of 7 square degrees. The 
camera had 4 CCD detectors with 2000 x 2000 pixels. For its asteroseismic goals 
the satellite operated in two modes: long runs of 150 days (central program) 
devoted to a small number of (~ 50) selected main-sequence targets brighter 
than magnitude 9, and short runs of 20 days (exploratory program) inserted 
in between two long runs dedicated to a variety of stars across the whole HR 
diagram from spectral type B to K. For the exoplanet hunting, the targets were 
red dwarfs (F to M) with magnitudes between 12 and 15.5.

The satellite was launched on 27 December 2006 and it terminated its op­
eration in June 2014. During this 7.5-year mission, CoRoT discovered several 
hundred exoplanet candidates and collected light curves for about 160 000 vari­
able stars.

Kepler Space Telescope Another satellite, dedicated primarily to the search 
for Earth-size planets, was NASA’s Kepler Mission8. Kepler was a 0.95-m aper­
ture Schmidt telescope equipped with a photometer that operated at 430-890 
nm and continually monitored the brightness of approximately 150 000 main se­
quence stars in a fixed field of view of 105 square degrees (~ 12 degree diameter). 
The focal plane consisted of an array of 42 CCDs pointing to one field, read-out 
every 3 seconds for stars brighter than R ~ 16 mag and integrated over 30 min. 
For uninterrupted observations, the field of view had to be out of the ecliptic 
plane, and to maximize the number of stars in the field, it pointed towards a 
region in the constellations Cygnus and Lyra.

The satellite was launched in March 2009, and the mission’s lifetime was 
initially planned to 3.5 years. This lifetime has been extended, because the data

https://corot.cnes.fr/en/COROT/index.htm
http://www.nasa.gov
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had higher than expected noise which required longer integration (hence longer 
duration) for a successful completion of the planned mission. In 2012, one of 
the spacecraft’s four reaction wheels used for pointing the spacecraft stopped 
turning, and in May 2013 the second wheel failed. This was the end of the main 
mission.

A new concept for the satellite has been developed, which allowed a restart 
of observations relying only on the remaining two reaction wheels. This so-called 
“Second Light” of Kepler was dubbed the K2 mission and was in operation from 
2014 until the spacecraft ran out of fuel in 2018. To cope with the satellite’s 
limitations, the new observing mode was a series of sequential fields distributed 
around the ecliptic plane with a length of 80 days each.

In total, Kepler observed 530 506 stars and discovered 2 662 exoplanets over 
its lifetime. Despite its major goal of exoplanet research, Kepler observed many 
more stars as a side product, and in fact, the number of publications based on 
Kepler and K2 data in other fields of astrophysics became even higher than the 
one dealing with exoplanets, showing that other scientific branches can greatly 
benefit from missions that are not directly related to their fields.

STEREO How stellar astrophysics can benefit from missions other than their 
own is impressively demonstrated by another NASA mission called Solar TEr­
restrial RElations Observatory (STEREO9). This mission consists of two nearly 
identical satellites orbiting the sun at 1 AU distance equipped with white light 
coronagraphs. The prime goal of that mission was to provide the first-ever stereo­
scopic measurements to study the sun and space weather, and to construct a 3D 
structure of the sun and of coronal mass ejections. Nevertheless, the satellites 
imaged also stars in the vicinity of the sun. These are monitored each year for 
a period of about 20 days and the images can be used to extract light-curves of 
the objects.

9https: // www.nasa.gov / mission_pages / stereo / main/index, html

10https: //brite-constellation.at /

The mission was launched in October 2006. While the STEREO B satellite 
died in 2014, STEREO A still continues to deliver data which can also be used 
for asteroseismic studies of variable stars.

BRITE A mission dedicated solely to the monitoring of objects with U-band 
magnitudes brighter than 6 is provided by the constellation of nanosatellites, 
each of them being a BRight Target Explorer (BRITE10). The first two have been 
provided by Austria (BRITE-AUSTRIA and UniBRITE) and were launched on 
February 25, 2013. These have been followed by two Polish BRITEs, BRITE-Lem 
launched on November 21, 2013, and BRITE-Heweliusz, launched on August 19, 
2014. Finally the Canadians launched two more BRITES (BRITE-Toronto and 
BRITE-Montreal) together on June 19, 2014. Unfortunately, BRITE-Montreal 
is not operating, so that the final constellation consists of just 5 nanosatellites.

To achieve their goal of investigating the stellar structure and evolution of 
the brightest stars in the sky, the camera exposure times range from 1 to 5 
seconds, collected about 3-4 times per minute and for 15-35 minutes per orbit. 
The observing run for each field is limited to about 180 days. The satellites are

http://www.nasa.gov
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equipped with an instrument sensitive either in a red bandpass (550 - 700 nm; 
UniBRITE, BRITE-Toronto, and BRITE-Heweliusz) or in a blue one (390 - 460 
nm; BRITE-Austria and BRITE-Lem). The field of view of both the red and 
the blue version of the camera is about 24 degrees in diameter allowing for the 
observation of about 15 bright targets per field at the time.

Gaia ESA’s next big mission was Gaia11. As a follow-up of the HIPPARCOS 
mission, Gaia has the ultimate goal to measure the positions, distances and space 
motions of about one billion stars. On board are two identical telescopes that 
point in different directions with a separation angle of 106.5 degrees. Three 
instruments collect the light coming from the two telescopes and merged into a 
common path. The astrometric instrument measures the stellar positions on the 
sky. By the end of the mission, the global astrometry will be measured for all 
one billion stars down to G ~ 20 mag down to micro-arcsecond precision. The 
two photometers, one operating in the blue (330 - 680 nm) and one in the red 
(640 - 1050 nm), collect low-resolution spectra and provide color information of 
the stars that will allow to derive stellar parameters such as temperature, mass 
and chemical composition. The radial velocity spectrometer measures the stars’ 
radial velocity at medium resolution (R ~ 11500) based on absorption lines in 
the red part (845 - 872 nm) of the spectrum.

Hhttps: // www.cosmos.esa.int/web/gaia/home

12https://tess. mit.edu/

Gaia is observing since July 2014. It is expected that throughout the mis­
sion, many thousands of extra-solar planets will be discovered (from both their 
astrometric wobble and from photometric transits) and that their detailed orbits 
and masses will be determined. During its 5-year mission, a sky-averaged num­
ber of 70 photometric measurements is expected from the astrometric field and 
from the blue and red photometers. Moreover, variability on short (seconds) to 
long (of order 5 years) time scales can be detected.

TESS A further mission, primarily devoted to the discovery of transiting exo­
planets, is NASA’s Transiting Exoplanet Survey Satellite (TESS12). The satellite 
is equipped with four identical, highly optimized, red-sensitive (600 - 1000 nm 
bandpass) wide-field cameras, each with a 24 deg by 24 deg field of view so that 
together they can monitor a 24 deg by 90 deg strip of the sky. Each strip is 
observed for a total of 27 days so that almost the full sky is mapped within a 
period of 2 years. The first year of its operation TESS scanned the southern 
sky, and in the second year the northern one. The CCDs read out continuously 
at 2-second intervals, and the data are stacked to the length of the chosen ca­
dence. During the 2-year run, a selected number of 200 000 brightest stars were 
observed with 2-minute cadence and provided with postage stamp sizes (usually 
10 x 10 pixels), whereas full-frame images had a cadence of 30 minutes. All data 
become public four months after observations, providing an unprecedented pool 
of high-quality light curves for all types of variable stars.

TESS is in operation since 2018 July 25 and finished its 2-year prime moni­
toring mission on 2020 July 5. Right after, the TESS extended mission started, 
which will last for another 27 months, beginning again with the southern sky

http://www.cosmos.esa.int/web/gaia/home
https://tess
mit.edu/
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and focusing on those targets that fell into gaps between sectors during the first 
monitoring period. During the extended mission, about 20 000 objects will be 
monitored per sector at 2-minute cadence as during the prime mission. However, 
a sample of up to 1000 targets per sector will be read out with a 20 s cadence,: 
whereas the full-frame image cadence has been reduced from 30 to 10 min to 
broaden the range of scientific investigations.

PLATO Finally, it is worth mentioning that ESA is currently preparing a 
new mission called PLAnetary Transits and Oscillations of stars (PLATO13). 
The launch of this satellite is scheduled for 2026 with an intended 4 years of 
operation.

13https: // sci.esa.int/web/plato

14https: //fys. kuleuven.be/ster/research-projects/plato-cs

The prime goal of that mission is again to find and study a large number 
of extrasolar planetary systems. The emphasis is hereby on determining the 
properties of terrestrial planets in the habitable zone around solar-like stars and 
to investigate seismic activity for a precise characterization of the planet host 
stars. To achieve these goals, PLATO will perform high precision, long (months 
to years), uninterrupted photometric monitoring in the visible band of a very 
large sample of stars brighter than V ~ 11 mag.

In addition, many other objects will be observed, which fall outside PLATO’s 
core science but are of high value for other branches in Astronomy dealing with 
stellar variability. These other aspects of astrophysics (e.g., binary and multiple 
stars, pulsating stars, magnetic stars, transient phenomena, stars with mass loss, 
etc. just to mention a few) are lumped together into what is called the PLATO 
Complementary Science (PLATO-CS14). The PLATO-CS will rely on the cali­
brated light curves provided by the PLATO mission. These light curves will be 
assembled in a variability catalog and will be offered to the scientific community 
for exploitation.

5. Ground-Based Photometric Surveys and Databases

For accessing photometric light curves and data from long-term monitoring one 
has not solely to rely on space missions, but can use products from their ground­
based counterparts. Several large surveys have been carried out, not always with 
the prime goal to study stellar pulsations and not always performed by profes­
sional astronomers, but providing high-quality data that can be used for aster- 
oseismological purposes. This section gives an overview of the diverse ground­
based surveys and databases.

5.1. Missions Dedicated to Variable Stars
AAVSO The American Association of Variable Star Observers (AAVSO) is 
the world largest association of variable star observers. It was founded in 1911 to 
coordinate the variable star observations of mostly amateurs astronomers, and 
to foster collaboration between amateurs and professionals in the field of variable 
star research.

kuleuven.be/ster/research-projects/plato-cs
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AAVSO’s International Database15 contains over 34 million variable star 
observations going back over one hundred years. It is the largest and most com­
prehensive digital variable star database in the world. To date, over 1 000 000 
new variable star brightness measurements are added to the database every year 
by observers from all over the world. The database contains a diversity of pho­
tometric measurements in different bands, and the AAVSO webpage provides a 
light curve generator allowing the user to see and download the available data 
for a given object.

15https: //www.aavso.org/aavso-international-database-aid

16http:/ /www.astrouw.edu.pl/asas/?page=main

1'http://wwwmacho. anu.edu. an/

ASAS The All Sky Automated Survey (ASAS16) is a low-cost automated sur­
vey with the prime goal to detect any kind of photometric variability. ASAS 
consists of two observing stations, one at the Las Campanas Observatory in 
Chile (since 1997) and another one at Haleakala, Maui (since 2006). Both tele­
scopes are equipped with two wide-field instruments that enable them to simul­
taneously observe in the V and I bands. The telescopes constantly monitor the 
whole available sky, meaning that they provide photometric data for about 10' 
stars which have magnitudes brighter than 14. The observations are converted 
to standard V and I magnitudes. They are collected in a variety of catalogs and 
can be accessed from the ASAS webpage.

5.2. Surveys Related to MACHOs
As for the space telescopes, there were also several ground-based missions not 
specifically targeted at variable stars, but providing data of variable stars as 
side-products. One of them was the search of MAssive Compact Halo Objects 
(MACHOs). These objects, which were considered to be mainly brown dwarfs 
and planets, have been proposed to constitute a significant fraction of the dark 
matter in the halo of the Milky Way. If they were detected, they could help ex­
plain parts of the missing dark matter in the Universe. To search for MACHOs, 
several large surveys were initiated in the early nineties. The idea was to dis­
cover these dark compact massive objects via microlensing events, in which the 
MACHOs would serve as gravitational lens passing in between us and a back­
ground light source, such as the stars of the Magellanic Clouds or of the Galactic 
Bulge. As such lensing events are extremely rare, long-time monitoring of a huge 
number of light sources with high precision photometry is required. Such moni­
toring naturally provides data for millions of stars as side-products and led to the 
discovery of many thousands of variable stars in the Magellanic Clouds and in 
the Galactic Bulge (e.g., Sarro et al., 2009). Based on these surveys, significant 
progress on the properties of large-amplitude oscillators, such as Cepheids, RR 
Lyrae stars, and red-giant and supergiant pulsators could be achieved. Here we 
list only the most important surveys related to the search for MACHOs.

MACHO The MACHO Project17 started in 1992. It has been carried out 
by a two channel system that employs eight CCDs, mounted on the 50 inch

file:////www.aavso.org/aavso-international-database-aid
file:///www.astrouw.edu.pl/asas/?page=main
http://wwwmacho
anu.edu
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telescope at Mt. Stromlo for simultaneous imaging in two passbands, in the red 
(630 - 760 nm) and blue (450 - 630 nm) bands.

EROS In 1990 started the Expérience pour la Recherche d’Objets Sombres 
(EROS18) survey which consisted of two phases, EROS-I and EROS-IL This 
survey has been carried out based on a 40 cm telescope with a CCD camera, op­
erated at the La Silla Observatory in Chile, and 1 meter Schmidt ESO telescope, 
with photographic plates, alternately with a blue and a red filter. In 1995, a 1.5­
m telescope recuperated from French observatories replaced the 40 cm telescope. 
This was the start of the EROS-II era which ended in 2003. EROS monitored 
in total 90 million stars located in the Galactic Center and in the Magellanic 
Clouds.

18http://eros. in2p3.fr/

19http://ogle.astrouw.edu.pl/

20https://keltsurvey. org/

21https: // exoplanetarchive.ipac.caltech.edu/

OGLE The Optical Gravitational Lensing Experiment (OGLE19) started in 
1992 with the first phase (OGLE-I) during which the 1-m Swope telescope at 
the Las Campanas Observatory in Chile has been utilized. The telescope was 
replaced in 1996 by the 1.3-m Warsaw Telescope, with which the second phase 
(OGLE-II) started in 1997. In 2001 OGLE-III started when a new CCD mosaic 
camera was installed covering a 35' x 35' field of view. Finally a 32 chip mosaic 
camera with a total field of view of 1.4 square degrees has been installed in 2010, 
initiating the so far last phase, OGLE-IV, which is still ongoing. While during 
the phases OGLE-II and OGLE-III standard UBVRI filters have been available, 
these have been replaced by standard VI interferometric filters.

5.3. Survey Related to Transiting Exoplanets
KELT The Kilodegree Extremely Little Telescope (KELT20) mission was a 
survey aimed at searching for transiting exoplanets around bright stars. The 
mission consisted of two fully robotic telescopes, one on each hemisphere. KELT- 
North is located at Winer Observatory in Arizona and went into operation in 
2005. KELT-South followed in 2009. It is located at the Sutherland observing 
station of the South African Astronomical Observatory. Each telescope has a 
field of view of 26 x 26 degrees and observed multiple fields with between 50 000 
and 200 000 stars per field. Their main focus was on stars with apparent visual 
magnitudes of V = 8 — 11 mag.

The KELT light curve data archive is publicly available via the NASA Ex­
oplanet Archive (NBA21). It contains about 1.1 million light curves. The KELT 
transit search was concluded in March 2020. During its observing run, 26 planets 
have been discovered.

5.4. Future Ground-based Photometric Mission
To my knowledge, there is so far one large mission in preparation:

http://eros
in2p3.fr/
19http://ogle.astrouw.edu.pl/
https://keltsurvey
exoplanetarchive.ipac.caltech.edu/
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LSST The Large Synoptic Survey Telescope (LSST22, renamed into Rubin 
Observatory) is currently under construction on Cerro Pachón in Chile. It has 
a three mirror system and the world largest CCD. The 3.2 gigapixels camera 
will operate from the UV to the near-infrared in the spectral bands labeled u, 
g, r, i, z, & y. With its almost 10 square degrees field of view (corresponding 
to 40 times the size of the full moon), the LSST will survey the night sky for 
a period of 10 years. Each night, more than 800 panoramic wide-field images 
with 30 second exposures will be taken with this 8.4-m telescope, resulting in 
a recording of the entire visible sky twice per week, and a total of about 1000 
visits for each object during the planned duration of the survey. The total data 
volume generated each night will be on the order of 20 Terabytes. Image data 
products will be made available daily, and data products resulting from coherent 
processing will be made available via yearly releases.

22https://www.lsst.org/lsst/

23https://phys.au.dk/song/

The scientific goal of this survey is to detect changes in brightness and 
position of objects as big as far-distant galaxy clusters and as small as near-by 
asteroids. The start of full science operations and the beginning of the survey is 
foreseen for the end of 2022.

5.5. Ground-based Spectroscopic Monitoring Facilities
The situation with observing missions dedicated to spectroscopic monitoring is 
much worse than the photometric possibilities. While many, especially national 
spectroscopic facilities exist and are used by individual research teams, there is 
to my knowledge only one coordinated network.

SONG This very promising project was launched in 2006 by the Stellar Ob­
servations Network Group (SONG23). Its ultimate goal is to construct a global 
network of six to eight small robotic telescopes distributed over the world to 
collect uninterrupted time series from ground for solar-type stars, and to search 
for and characterize planets.

Currently, only one 1-m telescope, located at the Teide Observatory in 
Tenerife, is in operation. It is equipped with a high-resolution echelle spec­
trograph with a resolution from 35 000 to 112 000 and a wavelength coverage of 
440 - 690 nm. A second 0.7-m telescope is in its testing phase and will be located 
at the Delingha Observatory in China, and a further node is under development 
for Southern Queensland, Australia.

6. Conclusions

In this Chapter, the observational techniques for obtaining high-quality data in 
both photometry and spectroscopy and their adequacy, limitations, and benefits 
for investigating pulsating stars have been presented. To study all aspects of 
stellar pulsations concurrently, it would be most ideal to simultaneously monitor 
stars photometrically (preferentially from space to have continuous light curves) 
and spectroscopically (which is currently possible only from ground) utilizing

22https://www.lsst.org/lsst/
23https://phys.au.dk/song/
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multiple, identical facilities distributed all over the world to minimize the losses 
due to day-time and bad weather, ideally with high cadence, excellent temporal 
resolution, high signal-to-noise and high spectral resolution. Obviously, this is 
wishful thinking and in reality the situation looks different from that.

For space photometry, many objects are very bright, meaning that the signal 
is polluted by read-out noise, or stars are saturated on the chip, if they are 
observed at all. Therefore, preference is often given to less bright objects.

For spectroscopy, many of the photometrically easily followed objects are 
too faint to monitor them with high cadence in high spectral resolution and high 
S/N. For this task, large 6-10 m-telescopes would be required, but monitoring 
campaigns at the big observatories have no or only little chance for getting time 
at their telescopes because of their low output but high costs. Therefore, such 
monitoring is usually performed with smaller, 1-2 m class telescopes. The advan­
tage of these telescopes is that there is much lower pressure, but for the price of 
being limited to bright (er) or long-period objects, for which the needed coverage 
and data quality can be achieved.

These limitations mean that for each target a compromise needs to be made 
and for the observational setup a strategy has to be selected such that the specific 
science goal will be achieved. Nevertheless, despite these hindrances the field of 
asteroseismology has been steadily growing in the past decades. And considering 
all the currently available and newly planned instruments and missions for pho­
tometry and spectroscopy, I am confident that the future for research in variable 
and pulsating stars is bright.
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Abstract. Hot subdwarf stars are core helium-burning objects, located 
at the hot end of the horizontal branch, and therefore, they are also known 
as Extreme Horizontal Branch stars. We can divide them into two large 
groups, of spectral types B and O, depending on their effective temper­
ature. Each spectroscopic class has subgroups showing luminosity vari­
ations due to pulsations, opening the possibility to study these compact 
objects through Asteroseismology. In this notes I will briefly review the 
main characteristics of hot subdwarfs B and O stars and the different 
pulsating subgroups.

Key words: asteroseismology — instabilities — stars: oscillations — 
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1. Introduction

Hot subdwarfs stars are evolved compact stars with temperatures between ~ 
20 000 — 70 000 K and surface gravities ranging from 5.6 to ~ 6.1. They are 
evolved low mass stars, M* < 0.5Mo, that consist in helium burning cores and 
a thin hydrogen atmosphere which is unable to support hydrogen shell-burning 
(Heber et al., 1984; Heber, 1986). They are found in the Galactic field population, 
classified as type O and B (sdO, sdB), depending on the temperature, and in 
globular clusters as Extreme Horizontal Branch (EHB) stars.

The progenitors of hot subdwarfs are main sequence stars with initial masses 
< 2.0 Me, that have undergone a core helium flash and made their way to the 
Horizontal Branch (HB), with a thin hydrogen envelope (Menv ^ 0.01Mo). As 
a result of this low hydrogen mass, after core helium exhaustion, the stars move 
directly to the white dwarf stage.

Around half of hot subdwarf stars are found in binary systems with short 
periods, from hours to days, with mostly white dwarf companions (Maxted et al., 
2001; Napiwotzki et al., 2004; Copperwheat et al., 2011). Since the sdB stars 
have evolved from red giants, much larger than current orbital separation of a 
few radii, the progenitor system must have undergone a common envelope (CE) 
phase.

Subdwarf B and O occupy neighboring regions in the HR diagram. However, 
they are quite different, both with respect to their chemical compositions and 
evolutionary status (Heber, 2016). The atmospheres of sdBs are mostly helium 
poor, their helium abundances might be as low as 1/1000 solar or less. sdO stars,
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on the odder hand, show a variety of helium abundances, ranging from 1/100 
solar to pure helium atmospheres (He-sdO).

A subgroup of both sdB and sdO stars show luminosity variability due to 
pulsations. In the case of sdBV there are three classes including the p—mode 
pulsators EC 14026 stars, the g—mode pulsators PG 1716 and the hybrid sdBV, 
showing both p— and g—modes. The hotter counterpart, the variable sdO stars 
show short p—mode pulsations. The main characteristics of the classes of pul­
sating hot subdwarf stars will be addressed in this work.

2. Evolution Towards the Horizontal Branch

The stars in the lower main sequence start their evolution with initial high densi­
ties (103 g/cm3 for ~ 1M@} and low temperatures, as compared to more massive 
stars. Thus, at the end of the central hydrogen-burning stage the remaining he­
lium core is close to degeneracy. With the increase in the helium core mass due 
to the hydrogen burning shell, it soon reaches electron degeneracy conditions, 
and a new source of pressure is now balancing the gravitational collapse. This 
structure, of a degenerate core and a non-degenerate envelope is in hydrostatic 
equilibrium. The hydrogen burning-shell is active and its energy is used to ex­
pand the envelope in a giant configuration, thus the star enters the Red Giant 
Branch (RGB). The effective temperature decreases until it reaches the Hayashi 
line1 and then the star starts to increase its luminosity.

1The Hayashi line marks the lowest effective temperature than can be reached by a stable 
configuration. The line itself corresponds to a fully convective star.

The contraction of the core releases gravitational energy that heats up the 
region where the hydrogen burning-shell is located, also increasing its produc­
tivity Pc NO ~ T20). Thus the envelope expands even further, increasing the 
luminosity.

As the hydrogen-burning shell moves towards the surface of the star, it 
produces helium increasing the mass of the core. Since the temperature of the 
core is proportional to its mass (T ~ Mc/Rc), it also increases. Thus, when the 
mass of the core is ~ 0.45Mo, independently of the total mass of the star, the 
core reaches a temperature of ~ 108 K, necessary to start the nuclear reaction of 
helium. However, since the pressure of the core is dominated by the degenerate 
electrons, an increase in the temperature due to the release of nuclear reactions 
does not lead to an expansion of the core. Thus, the expansion work is zero 
and all the released energy is transformed into internal energy, increasing the 
temperature even more, leading to an unstable release of energy. The large 
amount of energy is released fast as compared to evolution timescales, in an 
event called the helium-flash (He-flash). The energy produced in the core by 
the He-flash can reach luminosity of 1010Lo comparable to the luminosity of our 
Galaxy. Finally, the temperature will increase until T > Tpermi and the pressure 
depends on the temperature again. The core expands and cools, and the stable 
nuclear burning stage begins, i.e. the Horizontal Branch.
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3. The Formation of Extreme Horizontal Branch Stars

Hot subdwarf stars are located at the hot end of the Horizontal Branch, charac­
terized by a hydrogen envelope too thin to support nuclear shell-burning. The 
main issue to understand the formation of EHB stars is the large amount of mass 
that needs to be lost prior to or at the beginning of core helium burning. Two 
main formation channels have been proposed, being close binary evolution or 
the hot flasher scenario. Binary evolution through mass transfer and common 
envelope ejection must be important for sdB stars due to the high percentage 
of close binaries with periods of less than ten days. In addition, merger of two 
helium white dwarfs is another vital option to explain the origin of single hot 
subdwarfs. Enhanced mass loss during the RGB can decrease the hydrogen con­
tent of the envelope, delaying the core helium flash (the so-called hot flasher 
scenario), during which surface hydrogen is burnt after mixing into deeper layers 
(Heber, 2016). More detail on the possible formation channels are given below.

3.1. Hot Flasher Scenario

Stars corresponding to the low main sequence, where hydrogen burning is mainly 
due to the p — p cycle, begin the central helium burning stage with the He-flash 
at the tip of the RGB. However, if sufficient mass loss occurs during the RGB, 
the star will experience the He-flash at higher effective temperatures (Castellani 
& Castellani, 1993). The remnants of these "hot flashers" (Brown et al., 2001) 
are found to be close to the helium main sequence. The outcome of a hot flasher 
depends on the evolutionary phase during which it occurs (Cassisi et al., 2003), 
as shown in Figure 1. Panel (a) shows the evolution where the mass loss was 
slightly enhanced. In this case, the He-flash occurs near the tip of the RGB 
and the star settles near the blue horizontal branch. If the He-flash occurs 
early after departure from the RGB (Early hot flasher) at high luminosities 
and effective temperatures, the further evolution results in a standard H/He 
envelope hot subdwarf star (see panel b in Figure 1). The Late hot flasher 
scenario occurs when the He-flash happens after the star enters the white dwarf 
cooling sequence. If the He-flash occurs at high Teg, there is shallow mixing, 
resulting in a hot subdwarf star with an atmosphere enriched in helium and 
nitrogen due to convective dilution of the envelope (see panel c in Figure 1). If 
the He-flash occurs at a lower luminosity in the white dwarf cooling sequence 
(see panel d in Figure 1), the hydrogen-rich envelope is mixed and burned in 
the convective zone generated by the flash itself leading to strong enrichment of 
helium, carbon and nitrogen in the atmosphere (Heber, 2009, 2016; Battich et al., 
2018). Thus, when in the evolution the He-flash occurs, it not only determines 
the effective temperature of the star on the EHB but also its envelope chemical 
composition.

3.2. Close Binary Evolution

The large fraction of sdB stars in close binaries suggests that they are formed 
by binary interaction. There are three main formation channels: Roche-lobe 
overflow (RLOF) evolution, common envelope (CE) evolution (Paczynski, 1976), 
and the merger of two he-core white dwarfs (Webbink, 1984; Han et al., 2002, 
2003).
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Figure 1. Evolution of a solar metallicity star from the main sequence 
to the zero-age horizontal branch for different mass loss rates on the 
RGB. The peak of the He-flash is indicated with a blue asterisk, (a) 
The He-flash occurs soon after the tip of the RGB. (b) Early hot flasher. 
the He-flash occurs at high luminosities and effective temperatures, (c) 
Late hot flasher: The He-flash occurs soon after entering the white 
dwarf cooling curve, causing a shallow mixing episode, (d) Late hot 
flasher: The He-core occurs during the white dwarf cooling sequence 
causing a deep mixing episode. Credit: The evolutionary sequences 
from panels b, c and d were provided by Tiara Battich (private com­
munication), Battich et al. (2018).
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Figure 2. Contribution of the different close binary formation chan­
nels to the population of hot subdwarf stars. Credit: Adapted by Ingrid 
Pelisoli from Han et al. (2003).

In the RLOF formation channel, the mass transfer is dynamically stable 
and the companion star accretes all the matter. The red giant loses almost all 
its hydrogen-rich envelope during this stage and becomes a sdB star in a long 
period binary with a main sequence component. The orbital periods are in the 
range of 700-1300 days (Chen et al., 2013).

In the CE formation channel, the sdB progenitor fills its Roche lobe near 
the tip of the RGB. If the mass transfer rate is too high, the companion will not 
be able to accrete all the material, forming a common envelope. Due to friction 
with the gas the system will lose orbital energy and the orbit will shrink. The 
orbital energy is transferred to the common envelope until it is enough to eject it. 
The remaining core of the red giant will become the sdB star. Because the CE 
phase is short as compared to the evolutionary timescale of the single stars, the 
companion will remain almost unchanged. If the companion is a main sequence 
star the resulting close binary is a sdB+MS with a period between 0.1 and 10 
days (Heber, 2016). Even with the current advances in modeling, the physics 
behind common envelope and accretion is not well understood. Recent works as 
Davis et al. (2010) and Toonen & Nelemans (2013) are aimed at explaining the 
formation of white dwarf binaries, while Clausen et al. (2012) is focused on sdB 
binaries (Heber, 2016).

The most popular formation channel for single hot subdwarfs is the merger 
of two helium core white dwarf stars (Webbink, 1984). The merger scenario can 
be slow, fast or a combination of both (Zhang & Jeffery, 2012). In the slow 
merger scenario the largest star, i.e. the less massive white dwarf, fills its Roche 
lobe and all the mass is transferred to the companion. The material will form 
a disk in a few minutes and it will remain cold. The accretion is slow and can 
last for a few million year, with the angular momentum being dissipated towards
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the disk circumference. On the other hand, in the fast merger scenario, no disk 
is formed and the material falls directly onto the surface of the more massive, 
smaller companion. A combination of both scenarios is also possible, where one 
part of the disrupted donor star forms a corona (30%-50% of its mass), and the 
rest forms a cold disk (Zhang & Jeffery, 2012; Lorén-Aguilar et al., 2009).

Each channel contributes to the population of hot subdwarfs in different 
amounts and mass range. Han et al. (2003) carried out a detailed binary popu­
lation synthesis study considering CE and RLOF formation channels. In partic­
ular, they predicted that the distribution of masses for sdB stars is wider than is 
commonly assumed, with stellar masses ranging from 0.3 to ~ 0.8Mo, as shown 
in Figure 2. The canonical mass range, indicated in the figure, corresponds to the 
contribution from the hot flasher scenario. This result is in very good agreement 
with the distribution of the current population of hot subdwarf stars shown by 
Schneider (2019)2, where the mass range can be as low as O.2A70 and larger than 
0.7M@ in a few cases. There is a large contribution of objects near ~ 0.4Mo, 
that also have contributions from the hot flasher scenario, and a tail at lower 
masses that can only be formed through binary interaction.

2https://zenodo.org/record/3428841#.XcWlWJLYpE4

4. Chemical Structure and the Characteristic Frequencies

Hot subdwarf stars are part of the Extreme Horizontal Branch stage, where 
helium in the core is being transformed into carbon and oxygen due to nuclear 
reactions. At first, nuclear energy is being produced through the 3a process, 
where three nuclei of helium, or a particles, are combined to form a carbon 
nucleus. Once the abundance of carbon in the convective core is high enough,; 
~ 50%, the reaction 12C(a,7)O16 starts to be dominant, since it is more likely 
to combine two particles than three. Thus, the carbon abundance reaches a 
maximum and then decreases, along with the helium abundance. As a result,; 
the star leaves the horizontal branch with a carbon/oxygen core, usually with 
C/O < 1. " ' '

The chemical profile of a hot sdB model with stellar mass O.474A70, and 
Teff = 26 214 K is shown in Figure 3. In this figure only the more abundant 
elements are depicted. As expected, the central regions are a mixture of carbon, 
oxygen and helium. Carbon is still dominant but eventually its abundance will 
decrease and oxygen will become the dominant element. The helium rich region 
on top of the core is the remnant from hydrogen burning during the main se­
quence, since the He-burning core is always smaller than the H-burning regions. 
Finally, no diffusion was considered in the computations, thus the envelope is a 
mixture of helium and hydrogen.

Each chemical transition in the inner structure, will lead to a distinctive 
signature in the characteristic frequencies for pulsation. In Figure 4 we show 
the propagation diagram for an sdB model with stellar mass 0.473Mo, Teg = 
28 700K and logg = 5.53. The full line corresponds to the run of the Brunt- 
Vaisaala frequency (A^2), while the dashed curve is the run of the Lamb frequency 
(L¿) for 1 = 2. The gray shaded region corresponds to the evanescence region.

https://zenodo.org/record/3428841%2523.XcWlWJLYpE4


188 Alejandra Romero

Figure 3. Chemical abundance as a function of radius for a sdB model 
of O.474M0, and TefF = 26 214 K. Only the most abundant elements are 
depicted.

Figure 4. Propagation diagram for a sdB model with 0.473Mo, and 
Teg = 28 700 K, for 1 = 2 modes. The Brunt-Vãisalã (full line) and 
Lamb (dashed line) frequencies are also depicted, separating the prop­
agation and evanescent regions. The horizontal lines show the square 
values of the eigenfrequencies and the circles mark the position of the 
nodes in the radial eigenfunction.
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Figure 5. Light curve (left) and Fourier Transform (right) EC 14026­
2647 for the original data from Kilkenny et al. (1997). The ordinate in 
the light curve are separated by 0.05 mag and the abscissae by 0.01 d, so 
that the data read continuously from left to right and top to bottom, 
from fractional Julian date 0.307 to 0.387. For the FT the ordinate 
carets are separated by 0.015 mag. Credit: Kilkenny et al. (1997).

Propagation is possible if the frequency of the mode is higher or lower than N2 
and L^. Modes in the region of high frequency correspond to pressure modes 
while gravity modes are found in the low frequency regions (Unno et al., 1979). 
As can be seen from Figure 4, pressure modes propagate in regions closer to the 
surface while gravity modes will show larger amplitudes in the inner regions of 
the star. This effect is better depicted by the horizontal lines showing the square 
values of the eigenfrequencies and the circles marking the position of the nodes 
in the radial eigenfunction (yiY Thus, p-modes will bring information on the 
outer layers while p-modes will bring information on the central regions.

5. Pulsating Subdwarf B Stars

The first pulsating sdB was discovered by Kilkenny et al. (1997) with the South 
African Observatory, EC 14026-2647, showing short period variability with a 
main period around ~ 144 s. Therefore, this class of variable sdB is known as 
EC 14026. The light curve and Fourier Transform are presented in Figure 5. 
Independently and almost at the same time, Charpinet et al. (1996) predicted 
the existence of pulsation instability for pressure modes in sdB stars, due to 
the classical /«-mechanism associated to the Z—peak in the opacity. Figure 6 
shows the run of the Rosseland opacity compared to the time derivative of the 
work function dW/dr for the fundamental mode with 1 = 2 (Charpinet et al., 
1996). The peak in dW/dr is directly related to the peak in the opacity due 
to heavy elements marked as "Z-bump". Charpinet et al. (1996) first found 
that instability was only present for high metallicity models with Z > 0.04, but 
in a later work (Charpinet et al., 1997) they found that the enhancement in



190 Alejandra Romero

Figure 6. Run of the Rosseland opacity (dashed line) and the inte­
grand of the work integral for the fundamental mode with 7 = 2 (solid 
line). Driving regions (dW/dr > 0) are clearly associated with the 
opacity bump, caused by heavy element ionization (Z-bump). The Hell- 
Helll convection zone is indicated with vertical dotted lines. Credit: 
Charpinet et al. (1996), © AAS. Reproduced with permission.

the Fe-peak elements in the driving region was enough to drive pulsations. The 
local overabundance of heavy elements is possible due to the equilibrium between 
radiative levitation and gravitational settling processes.

EC 14026, also called V361 Hya stars, pulsate in pressure modes with short 
periods between 80 s and 580 s, with amplitudes of 0.3 — 64 mmag. They are 
found mainly among the hotter sdBs, with effective temperatures between 28 000 
and 35 000 K, and logy ^ 5.8. The position of the current sample of EC 14026 
stars in the logy — Teg plane is depicted in Figure 7 (blue circles) in the low logy 
part of the diagram, along with all classes of pulsating hot subdwarfs, that will 
be discussed below. The data was extracted from Table 1 of Holdsworth et al. 
(2017). The sdB instability strip is not pure, and around 10% of the objects in the 
temperature range where EC 14026 stars are found, show pulsations (0stensen 
et al., 2010).

The second class of variable sdB stars was discovered by Green et al. (2003). 
These stars are known as V1093 Her, or PG 1716 after the prototype PG 
1716+426. PG 1716 stars are long period pulsators with periods between 1400 
and 43 500 s, and amplitudes of 0.4 — 4.1 mmag. As can be seen from Figure 
7 (red triangle-up), they are cooler than the p-mode pulsators EC 14026, with 
effective temperatures between 23 000 and 30 000 K, and logy ~ 5.4. Fontaine 
et al. (2003) showed that y-mode pulsations are excited in PG 1716 stars by the 
same K-mechanism proposed by Charpinet et al. (1996, 1997), if the observed 
y-modes are high radial order and high harmonic degree (7 > 3) modes. Around 
%75 of the objects inside the PG 1716 instability strip show brightness variations.

Three years later, Schuh et al. (2006) reported the first pulsating sdB, HS 
0702+6043, that showed both short and long periods, and thus it was called a



Pulsating Hot Subdwarf Stars 191

Tff [kK]

Figure 7. The distribution of the variable hot subdwarf stars in the 
logg — Teff plane. Each class is indicated with different symbols and 
colors. The sub-classes of sdBV stars EC 14026 (blue circles), PG 1716 
(red up triangle) and the Hybrid (green squares) are depicted in the 
low temperature part of the plane. The only He-sdBV is also included 
(orange diamond). SdO variables are located in the hot part of the 
diagram, the only sdOV detected in the held of the Galaxy (magenta 
star) and those discovered in the globular cluster uj Cen (black down 
triangle). The values of logg and effective temperatures where taken 
from Table 1 of Holdsworth et al. (2017).
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Figure 8. Fourier transform for the discovery of the hybrid sdB star 
HS 0702+6043. The plot shows the Fourier Transform of the full light 
curve, with the window function for the two-night data set displayed 
in the inset panel in the upper right corner (frequency in //Hz as in 
the main plot, the amplitude scaling is arbitrary). Credit: Schuh et al. 
(2006). Copyright A&A. Reproduced with permission © ESO.

hybrid sdBV star. HS 0702+6043 was previously identified as a EC 14026 star 
with two short periods of 363 s and 383 s, but further observations revealed a 
low-amplitude (~ 4 mmag), long-period of 3538 s, identified by Schuh et al. 
(2006) as a y-mode pulsation. The Fourier Transform from Schuh et al. (2006) is 
shown in Figure 8. Hybrid sdBV stars show effective temperatures ~ 28 000 K, 
between long and short period sdBVs, as it is shown in Figure 7, where hybrid 
sdBVs are depicted with green squares. Since p—modes propagate in the outer 
regions of the star, whereas g—modes do in the deep interior, the whole internal 
structure of the star can be sampled in the case of hybrid sdB stars (Heber, 
2016). ' '

The only pulsating He-sdBV is also depicted in Figure 7 (orange diamond). 
He-sdB stars are a very small group of subdwarf stars that show varying degrees 
of helium enrichment in the envelope, but have effective temperatures similar to 
hydrogen rich sdB stars (Ahmad & Jeffery, 2003). Variability of the He-sdBV, 
LV IV-140 116, was reported by Ahmad ¿ Jeffery (2003), with the detection of 
two long periods of 1953 s and 2870 s, characteristic of y-mode pulsations.

The period range for each class of pulsating sdB stars is shown in Figure 
9, where the period range for all sdB stars from Figure 7 are depicted in the 
Period-logy plane. EC 14026 p—mode pulsators show periods in the range of 
60-600 s, while PG 1716 g—mode pulsators show long periods in the range of 
1400-44000 s. Hybrids are in between, with periods in the range of 118-28500 s.

6. Pulsating Subdwarf O Stars

Subdwarf O stars are intrinsically hotter than sdB stars. In addition, they show a 
range of helium abundance in the atmosphere, from a hundredth of solar content 
to pure helium. As an example, Figure 10 shows the normalized spectra of the 
sdO J16007+0748 (Woudt et ah, 2006). The He II lines are clearly present in
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Figure 9. Period-logg diagram for the pulsating sdB stars presented 
in Figure 7. The colors represent the same as the previous figure. The 
data was taken from Table 1 of Holdsworth et al. (2017).

absorption, along with the Balmer series lines from Hp to He. Given the small 
binary fraction of sdO stars, merger of two helium white dwarfs or hot flasher 
evolution are the most likely formation channels.

J16007+0748 is the first and only pulsating sdO in the Galactic field. Woudt 
et al. (2006) reported the detection of short period variability with a main period 
of 119.33 s, being identified with p-mode pulsations. The position of the sdOV is 
depicted in Figure 7 with a magenta star, being the hottest object of the sample.

Latter, Randall et al. (2010, 2011) reported the detection of four sdOV stars 
in the globular cluster w Cen. The objects showed periods in the range between 
84 s and 119 s, in agreement with the sdOV found by Woudt et al. (2006). 
Currently, there are five sdOV stars from uj Cen, depicted with black down­
triangles in Figure 7. Contrary to the sdOV star found in the field, the objects 
belonging to the globular cluster, show hydrogen dominated atmospheres, and 
are also cooler. This could be related to the lower metallicity of the cluster as 
compared to the disk population. The excitation mechanism seems to be k— 
mechanism, similar to sdBV stars (Randall et al., 2016).

7. Concluding Remarks

In this work I briefly described the main characteristics of the pulsating hot 
subdwarf stars., I recommend the excellent reviews of Heber (2009) and Heber 
(2016) and references therein, for more details.



194 Alejandra Romero

Wavelength (Â)

Figure 10. Combined SALT spectrogram of J16007+0748 (only sdOV 
star) obtained with a total exposure time of 1800 s. The absorption lines 
are marked and labelled. Credit: Woudt et al. (2006).

There are currently, ~ 100 sdB variables and six sdO variables reported 
(Holdsworth et ah, 2017), including those found with Kepler satellite observa­
tions. New space and ground-based surveys are expected to increase this sample. 
In particular the TESS (Transit Exoplanet Survey Satellite) is a great tool to find 
bright variables, as hot subdwarf stars, with around 40 confirmed objects.

It is important to notice that, in order to study hot subdwarf stars using 
asteroseismology, physically sound representative models should be available, in 
order to compare the observed periods with theoretical pulsation spectrum. In 
particular, by studying the inner structure of hot subdwarf stars we could shed 
some light on the formation channels of these compact blue objects.
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Abstract.

White dwarf stars are the endpoint of the evolution of more than 
95% of all stars in the Milky Way. They are compact objects, where the 
gravity is balanced by the pressure of a degenerate electron gas. Along 
the cooling curve, there are several instability strips where white dwarfs 
show photometric variability due to pulsations, opening the possibility to 
study these compact objects through asteroseismology. In this notes I 
will briefly review the main characteristics of white dwarf stars and the 
different pulsating subgroups.
Key words: asteroseismology — instabilities — stars: oscillations — 
stars: interiors — planet-star interactions

1. Introduction

White dwarf stars are the endpoint in the evolution of all stars with initial 
masses below 8 — 12M© (Siess, 2010; Woosley & Heger, 2015; Doherty et al., 
2015; Lauffer et al., 2018). This comprises more than 95% of all stars in the 
Milky Way. Thus, they can be considered as fossils and they convey important 
information on the structure, evolution and chemical enrichment of our Galaxy 
and its components. They are compact objects with radius similar to the radius 
of the Earth and surface gravities of logg ~ 8. They can also be found in a 
wide range in luminosity L/Le ~ 1() 4-' — 103, and effective temperatures from 
~ 200 000 K to 4000 K. White dwarf stars are degenerate objects, where the 
inner pressure is dominated by a degenerate electron gas (it does not depend on 
temperature), while the thermal structure is dominated by the non-degenerate 
ions. In the Hertzprung-Russell (HR) diagram white dwarfs are found below the 
main sequence, being mostly of types O, B and A.

Pulsating white dwarf stars can also be found along the cooling curve. They 
show g— mode non-radial pulsations with periods from minutes to a few hours 
and variation amplitudes of millimag. White dwarf asteroseismology fully ex­
ploits the comparison between the observed pulsation periods in white dwarfs 
and the periods computed for appropriate theoretical models. It allows us to in­
fer details of the origin, internal structure and evolution of white dwarfs (Fontaine 
& Brassard, 2008; Winget & Kepler, 2008; Althaus et al., 2010). In particular, 
constraints on the stellar mass, the thickness of the helium and hydrogen layers, 
the core chemical composition, weak magnetic fields and slow rotation rates can 
be inferred from the period patterns of pulsating white dwarfs.
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There are currently several families of pulsating white dwarfs and related 
objects, that can be found in specific ranges of effective temperature along the 
cooling curve. At high effective temperatures we found the GW Vir stars, fol­
lowed by He-rich atmosphere V777 Her, C-rich atmosphere DQV and the cool 
H-rich atmosphere ZZ Cetis. For low stellar masses, below ~ 0.3Mq, we find the 
Extremely Low Mass (ELM) white dwarfs and their progenitors the pre-ELMs. 
The main characteristics of the classes of pulsating white dwarf stars will be 
addressed in this work.

2. Spectroscopic Classification of White Dwarfs

From a spectroscopic point of view, the population of white dwarfs can be divided 
into two groups: DAs, with hydrogen-rich atmospheres, and non-DAs, with 
hydrogen-deficient atmospheres. DA white dwarfs can be identified from the 
Balmer line series in their spectrum, as shown in the top panel of Figure 1. 
This group is the most abundant and corresponds to ~ 85% of all known white 
dwarfs (Kepler et al., 2016, 2019). The non-DA white dwarfs can be classified 
by the dominant element in their spectra and effective temperature: a DO class 
with strong lines of He II and effective temperatures of ~ 45 000 — 200 000 K; a 
DB class with strong He I lines and Tefj ~ 11000 — 30 000 K; and for effective 
temperatures below Teg ~ 11000 K, DC, DQ and DZ classes with a continuum 
spectrum, traces of carbon and metals in their spectra, respectively. Among the 
non-DA white dwarfs, DB stars are the most abundant. The spectrum for DB 
stars is characterized by He I lines, as shown in the bottom panel of Figure 1.

White dwarf stars show a mass distribution that is a combination of the 
initial mass function and the timescale of evolution -that depends on the mass. 
Both DA and DB distributions show a peak at ~ 0.55Mo (Ourique et al., 2019). 
However, DA white dwarfs show a wider mass range, extending to low mass, 
below 0.45M& and high mass, higher than ~ 0.7Mo. At the low mass end, 
a contribution from close binary evolution is necessary, while for high stellar 
masses, mergers should be the main formation channel (Cheng et al., 2019).

3. The Formation of White Dwarf Stars

White dwarfs are the endpoint of all stars with initial masses below 8 — 12MO 
that evolved as single stars. Isolated stars or stars in non-interacting binary 
systems, will evolve as single stars. Binary evolution can also produce white 
dwarf stars. In particular, low mass white dwarf stars are produced from close 
binary interaction while white dwarf stars with stellar masses > 0.8Mo are 
thought to be produced mainly by merger episodes.

Hydrogen atmosphere white dwarfs (DA) with stellar masses around ~ 
0.55M© are expected to have evolved from single stars. Figure 2 shows the evo­
lution from the main sequences to the white dwarf cooling curve for stars with 
initial masses between 0.92 Mq and 3 Mq. The evolution starts in the main se­
quence, where hydrogen is burnt in helium via the p — p chain or CNO-cycle (see 
for instance Kippenhahn et al., 2012, for details). Once the hydrogen in the core 
is exhausted, they move to the first giant stage: the Red Giant Branch (RGB). 
The hydrogen burning is now in a shell around the helium core, and its energy



198 Alejandra D. Romero

Figure 1. Spectra for two white dwarf stars from the Sloan Digital 
Sky Survey (SDSS). Top: DA white dwarf with Teff ~ 14 660 K. Bot­
tom: DB white dwarf with Teff ~ 19420 K.

is used to expand the outer layers. The inner helium core contracts releasing 
gravitational energy which in turn increases its temperature. Once the helium 
burning temperature is reached, a second central nuclear burning stage begins. 
If the hydrogen envelope is massive enough, the star has two energy sources, the 
central helium burning and the hydrogen burning-shell. After the exhaustion 
of helium, the star goes through a second giant stage: the Asymptotic Giant 
Branch (AGB). The AGB ends after the Thermal Pulses strip most of its enve­
lope (TP-AGB in Figure 2) and the star evolves to higher effective temperatures 
at a nearly constant luminosity. Finally, after reaching the maximum Tefj the 
star enters the white dwarf cooling sequence.

White dwarf stars with hydrogen-deficient atmospheres are believed to be 
formed from a Very Late Thermal Pulse scenario, where the last thermal pulse 
occurs at high effective temperatures, burning all remaining hydrogen (Althaus 
et al., 2005, 2009). Close binary evolution or mergers are less likely to form 
hydrogen-deficient white dwarfs since most donor stars will have hydrogen-rich 
envelopes.

For white dwarfs with stellar masses below ~ 0.45Mo, depending on initial 
metallicity, the helium core will not reach the temperature for nuclear reactions 
and the star will become a helium-core white dwarf. In addition, for stellar 
masses < O.3M0 binary evolution is the only possible formation channel, since 
a single star will take more than the age of the Universe to reach the white 
dwarf stage (Pelisoli & Vos, 2019). The HR diagram of the evolution of ELM 
progenitor of O.28Af0 is shown in Figure 3. The progenitor star, transfers most 
of its mass due to a Roche lobe overflow (RLO) during its giant stage, leaving 
the RGB before the ignition of nuclear reactions in the helium core. The loops 
in the HR diagram are caused by residual hydrogen shell-burning, that reduces 
the hydrogen content in the envelope (see Istrate et al., 2014a, 2016, for details).
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Figure 2. HR diagram for evolutionary sequences for Z = 0.004 and 
initial masses in the range 0.92 — 3.OM0 and white dwarf masses in 
the range 0.503 — O.817M0 (Romero et al., 2015). The dashed line 
represents the location of the beginning of the main sequence.

Figure 3. HR diagram showing the evolution of a O.28M0 white 
dwarf, with helium core. The progenitor star, with initial mass 1.4M0 
and Z = 0.02. is in a binary system with a neutron star of 1.2 M© 
and initial orbital period of 50 days. Credit: Courtesy of Alina Istrate 
(private communication).
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Figure 4. The internal chemical profiles of DA white dwarf model 
with M* = 0.593Mq and Teg- ~ 11 500 K. Only the main nuclear species 
are depicted. The core is composed by a mixture of carbon and oxygen.

4. Chemical Structure and Characteristic Frequencies

Depending on the stellar mass, we can also classify the white dwarf stars by 
their central composition. Most progenitors will go through the hydrogen and 
helium central burning stages, resulting in a C/O core white dwarf. The chemical 
profile for a 0.593Mq DA white dwarf is shown in Figure 4, where we show the 
abundances by mass as a function of the outer mass. We consider only the most 
abundant elements, in this case, hydrogen, helium, carbon and oxygen. The 
central regions (left side) correspond to the C/O core, formed mainly during 
the central helium burning stages. On top of the core, there is a helium buffer, 
with ~ 10 2.V,. Finally, a hydrogen rich atmosphere is formed due to diffusion. 
Due to the characteristic high logg of white dwarf stars, chemical diffusion and 
gravitational settling will play a main role in determining the chemical structure 
of the star. Diffusion processes are responsible for the chemical stratification, 
where lighter elements are lifted to the envelope and heavier elements sink down.

For stellar masses below 0.30 — 0.45A/o the progenitor star does not expe­
rience central helium burning and it is left with a helium core, surrounded by a 
thick hydrogen envelope (Mh > 10 3.1/. ), as shown in Figure 5, for a O.198M0 
star. As mentioned in section 3, white dwarf stars with stellar masses below 
O.3M0 can only be formed by close binary evolution. These objects can be clas­
sified as low-mass or extremely low-mass white dwarfs, the limit between both 
is not well defined in the literature. In this work I will consider white dwarfs 
with masses below O.3M0 as ELMs to be consistent with the pulsating subclass.

For stellar masses higher than ~ 1M0, carbon can still be ignited in de­
generate conditions, giving rise to a O/Ne/Mg white dwarf star. An example 
of the chemical profile for a white dwarf of 1.22MO is shown in Figure 6. The 
shaded region indicates the part of the core that is crystallized. The relative 
amount of each element in the central regions depends on the total mass and



Pulsating White Dwarf Stars 201

Figure 5. Same as Figure 4 but for a model with M* = 0.198Mo and 
Teff ~ 8985 K. The core is composed only by helium.

whether carbon burning reaches the center of the star, among other things (see 
for example Denissenkov et al., 2013; Lauffer et al., 2018).

In case of the non-DA white dwarfs, hydrogen is depleted in the outer 
regions of the star, leaving a He/C/O envelope for high effective temperatures, 
and a helium-rich envelope, for lower effective temperatures. This can be seen 
from Figure 7, where we show a chemical profile for a non-DA white dwarf star 
of O.515Af0 at three different temperatures during the cooling sequence. The 
top panel corresponds to a model at Teff = 81 752 K, that can be considered 
a DO white dwarf star. The central composition is similar to that of a DA 
white dwarf of the same mass, but the outer layers are composed by a mixture 
of helium, carbon and oxygen (Althaus et al., 2009). As the star cools down, 
diffusion processes begin to model the chemical profile (see middle and bottom 
panel from Figure 7). The oxygen and carbon sink down, leaving a helium­
rich envelope, characteristic of DB stars. In addition, a "double-layer" structure 
forms in the helium rich region (Althaus et al., 2009).

White dwarf stars show luminosity variations due to gravity modes. Since, 
these are compact objects, pressure modes will have periods shorter than ~ 10 
s. Due to the core degeneracy, the Brunt Vaisala frequency decreases at the 
center, "trapping" the pressure modes in the most inner regions. In addition, 
the propagation region for gravity modes extends to the surface of the model. 
Thus the propagation regions for p— and g—modes are inverted in comparison 
with other types of pulsators. This can be seen from Figure 8, where the Brunt 
Vaisala (TV2) and Lamb (Lf) frequencies for £ = 1 and 2 are depicted. The 
propagation regions for p— and g—modes are also indicated.

5. Pulsating White Dwarfs

In this section, I will present the main characteristics of the most populous 
classes, being GW Vir, V777 Her, ZZ Cetis, pre-ELMV and ELMV. For a com-
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Figure 6. Same as Figure 4 but for a model with stellar mass of 
1.22Mq and Teg = 10 000 K. The central composition is a mixture 
of oxygen, magnesium and neon. Courtesy of Gabriel Lauffer Ramos 
(private communication).

Figure 7. Internal abundance distribution of the main chemical ele­
ments as a function of the outer mass fraction (log(l — MV,M^ for 
a hydrogen-deficient 0.515Mo sequence at three stages on its cooling 
branch, as specified by the luminosity and effective temperature values 
(log(L/Lq)), logTeff) in each panel. The upper panel represents the 
chemical profile for a DO white dwarf star, while the middle and lower 
panels are characteristic of DB white dwarfs. Credit: Althaus et al. 
(2009), © AAS. Reproduced with permission.
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Figure 8. Characteristic frequencies for a DA white dwarf model of 
Teg = 11500 K and 0.593M© a s function of log(l — mr/M*). The 
Brunt-Vaisala frequency (black line) and Lamb frequency (red line) for 
t = X (full line) and £ = 2 (dashed line) are plotted in a logarith­
mic scale. The propagation regions for pressure and gravity modes are 
indicated as P— and G—modes, respectively.

píete overview on pulsating white dwarfs I recommend the reader the reviews 
from Winget & Kepler (2008); Fontaine & Brassard (2008); Córsico et al. (2019).

The excitation mechanism acting on pulsating white dwarf stars is the 
k—mechanism related to the opacity bump due to partial ionization of a given 
element, being carbon and oxygen (K II shell electrons) for GW Vir (DO) stars, 
helium for V777 Her (DB) stars and pre-ELMVs, hydrogen for ZZ Ceti (DA) 
stars and ELMVs and iron peak elements for BLAPs. Since each element be­
gins to be ionized at different effective temperatures, this will lead to instability 
strips at different positions in the Tefj — log g plane. Figure 9 shows the loca­
tion of all known classes of pulsating white dwarfs as associated objects. Each 
class is depicted with a different color, while the symbol indicates which element 
is responsible for the excitation due to the k—mechanism. Also included, are 
theoretical evolutionary tracks for different stellar masses in the cooling curve.

5.1. ZZ Ceti Stars

The first pulsating white dwarf star was reported by Arlo Landolt in 1946, and 
it was the DA white dwarf HL Tau 76, showing a dominant period at 12.5 min 
(Landolt, 1968). Since then, 253 objects are part of the DA white dwarf variable 
class, known as ZZ Cetis (black circles in Figure 9).

The excitation mechanism enabling pulsations in ZZ Ceti stars corresponds 
to the k—mechanism due to the opacity bump caused by partial ionization of 
hydrogen at the base of the hydrogen-rich envelope. At effective temperatures 
characteristic of ZZ Ceti stars, diffusion already shaped their chemical structure, 
leaving a hydrogen pure envelope. Because of this, it is believed that the insta­
bility strip for ZZ Cetis is pure, meaning that all DA white dwarfs in it should 
present photometric variability due to pulsations.
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Figure 9. The classes of pulsating WDs. The data was extracted 
from Fontaine & Brassard (2008); Bognar & Sodor (2016); Pietrukowicz 
et al. (2017); Córsico et al. (2019); Romero et al. (2019a); Kupfer et al. 
(2019). Some theoretical sequences are included for stellar masses of 
0.878, 0.638 and 0.524 M® from Romero et al. (2015) and for 0.324 
and 0.182 Mq from Istrate et al. (2016). The different symbols indicate 
the element related to the excitation mechanism: hydrogen (circles), 
helium (triangle-up), carbon and/or oxygen (triangle-left) and iron 
peak elements (squares).
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Figure 10. Distribution of ZZ Ceti stars on the Teg- — logg plane. 
Coloured symbols correspond to the ZZ Ceti stars known to date, 
extracted from Bognar & Sodor (2016) (blue triangle-up), Su et al. 
(2017) (green triangle-left), Hermes et al. (2017a) (red triangle-down), 
Bell et al. (2017) (violet triangle-right), Rowan et al. (2019) (magenta 
square) and Romero et al. (2019a) (black circle). We include evolution­
ary tracks (dashed lines) with stellar masses of 0.5, 0.6, 0.7, 0.8 and 
0.9M@ from top to bottom (Romero et al., 2019b). For visualization 
purposes we include the observed blue and red edges (no uncertainties 
are considered).

ZZ Ceti stars are the most populous class of pulsating white dwarfs (Romero 
et al., 2019a), with periods in the range 70 — 2000 s and variation amplitudes of 
0.01-0.3 mag. The instability strip for ZZ Cetis extends ~ 2500 K in effective 
temperature, from ~ 13 000 K to ~ 10 400 K, depending on stellar mass (Kepler 
& Romero, 2017; Hermes et al., 2017a). All ZZ Cetis known to date are depicted 
in Figure 10 in the Tjjr — logg plane. As can be seen from this, the instability 
strip is intrinsically hotter for higher stellar masses.

The ZZ Cetis can be classified into three groups, depending on the effective 
temperature (Clemens, 1993; Mukadam et al., 2006). The hot ZZ Cetis, which 
define the blue edge of the instability strip, exhibit a few modes with short periods 
(< 350 s) and small amplitudes (1.5-20 mma). The pulse shape is sinusoidal or 
sawtooth-shaped and is stable for decades. On the opposite side of the instability 
strip, there are the cool DAV stars, showing several long periods (up to 2000 s), 
with large amplitudes (40-110 mma), and non-sinusoidal light curves that change 
dramatically from season to season due to mode interference. Mukadam et al. 
(2006) suggested introducing a third class, the intermediate ZZ Cetis, with mixed 
characteristics from hot and cool ZZ Cetis.

Asteroseismological studies including large samples of ZZ Ceti stars, ~ 40 — 
100 objects, found that the thickness of the hydrogen envelope is not the same
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Figure 11. Light curve (top panel) and Fourier Transform (low panel) 
for the outburst ZZ Ceti star PG 1149+057. The 10 outburst events 
are marked in green while the data in quiescence is marked as black 
points. Pulsations persist during outbursts but have higher amplitudes 
and shorter periods than in quiescence. Credit: Hermes et al. (2015). 
© AAS. Reproduced with permission.

for all stars, but it shows a distribution in mass, from ~ 10-4M* to 10-10M* 
(Castanheira & Kepler, 2008, 2009; Romero et al., 2013, 2019a). Thin hydrogen 
envelopes, with My < 10-8, have been confirmed from mass-radius observations 
of white dwarfs in binaries (Romero et ah, 2019b), and it is also consistent with 
spectral evolution due to mixing processes in the outer layers (Cunningham et ah, 
2020; Ourique et ah, 2020).

At the red edge of the ZZ Ceti instability strip, some objects show outburst 
events (Bell et ah, 2015). These stars show a rich period spectrum combined with 
bursts repeating every few days, with peaks of up to 45% above the quiescent 
level and involving very energetic events (~ 1033 —1034 erg). Figure 11 shows the 
light curve and Fourier Transform for the second outbursting ZZ Ceti, reported 
by Hermes et al. (2015). The outburst episodes are coupled with the g—mode 
pulsations, due to highly non-linear effects (Luan & Goldreich, 2018).

5.2. GW Vir Stars

GW Vir stars are hot pulsating white dwarfs with hydrogen-deficient atmo­
spheres composed by a mixture of helium (~ 30 — 80%), carbon (~ 15 — 60%) 
and oxygen (~ 2 — 20%) (Werner & Herwig, 2006), as shown in the top panel 
of Figure 7. Luminosity variations are due to g—mode pulsations with low har­
monic degree (I < 2) and high radial order k > 18), showing periods in the range 
of 300-6000 s and variation amplitudes of 0.01-0.15 mag.

The prototype of the class PG 119 035 was discovered to be variable by 
McGraw et al. (1979), and it is the pulsating star with more detected periods after 
the Sun, with 198 periods (Costa et ah, 2008; Hermes et ah, 2017b). Currently, 
there are 20 GW Vir stars, depicted as blue triangle-left symbols in Figure 9. 
The instability strip of GW Vir stars extends from ~ 180 000 K to ^ 75 400 
K in effective temperature and from 5.5 to 7.7 in surface gravity (Fontaine &
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Brassard, 2008; Córsico et al., 2019). GW Vir stars are sometimes divided into 
two subclases. The objects with logg = 5.5 — 7.0 are still surrounded by the 
Planetary Nebula, that formed from the mass loss episodes during the thermal 
pulses, and are called Planetary Nebula Nuclei Variable (PNNV). The objects 
with surface gravity logg = 7.0 — 7.3 have already lost the planetary nebula and 
are also known as DOV stars.

The excitation mechanism is the «-mechanism caused by the cyclic ion­
ization of the K-shell electrons of carbon and oxygen, as originally proposed 
by Starrfield et al. (1983). Latter computations using modern opacity values 
demonstrated that the presence of non-variables inside the GW Vir instability 
strip can be explained by an excessively large abundance of helium (Quirion 
et al., 2004). Thus, the GW Vir instability strip is intrinsically impure.

5.3. V777 Her Stars
By direct analysis with ZZ Ceti stars, Winget et al. (1982b) predicted that DB 
white dwarf stars should show photometric variability due to g—mode pulsations. 
The excitation mechanism is the «—mechanism due to partial ionization of he­
lium. Soon after, the first pulsating DB white dwarf star GD 358 was found by 
Winget et al. (1982a). GD 358 shows a complicated non-stable period spectrum 
as can be seen from Figure 12, where light curves from 1996 to 2006 are shown 
(Provencal et al., 2009). The star shows 27 periods, corresponding to 10 inde­
pendent modes, between 250 s and 1000 s. The general frequency locations of the 
identified modes are consistent throughout the years, but the high-k multiplets 
exhibit significant variability in structure, amplitude and frequency (Provencal 
et al., 2009). These changes in the amplitude spectrum with timescales of a few 
years are thought to be consequences of strong non-linear coupling, due to the 
interaction between the pulsations and the convective layer.

The instability strip of V777 Her stars extends from ~ 32 000 K to ~ 22 400 
K in effective temperature and from 7.5 to 8.3 in surface gravity, with periods 
between 120 s and 1100 s, and amplitudes of 0.05 to 0.3 mag (Fontaine & Bras­
sard, 2008; Córsico et al., 2019). There are ~ 50 pulsating DB white dwarfs 
known to date, 27 of them depicted with triangle-up symbol in Figure 9.

The V777 Her instability strip is currently non-pure. However, this fact is 
related to the determination of the effective temperature and logg obtained from 
fitting of the spectra with model atmospheres. Small and undetected amounts 
of hydrogen in the helium-rich envelope can lead to spectroscopic effective tem­
peratures considerably lower than those obtained with pure helium model at­
mospheres. Thus, the purity of the V777 Her instability strip is still an open 
subject in the field.

5.4. ELMV and Pre ELMV
Extremelly low mass white dwarfs are helium core stars with stellar masses below 
O.3M0 (Pelisoli & Voss 2019), formed necessarily by close binary evolution, that 
correspond to the low mass wing of the mass distribution of white dwarf stars 
(Kepler et al., 2016, 2019). A typical chemical profile of an ELM white dwarf is 
shown in Figure 5.

Contrary to the case of other pulsating white dwarf classes, in pulsating 
ELMs g—modes should be core modes, while the propagation region for p—modes
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Figure 12. Light curve of GD358 from 1996 to 2006. Credit: Proven­
cal et al. (2009). (c) AAS. Reproduced with permission.

extends to the surface. This is shown in Figure 13, where the characteristic 
frequencies are depicted for a model with 0.198Af© and Teg ~ 8950 K. This is 
due to the low degeneracy degree in the center regions.

Pulsational instabilities in ELMs were predicted by Steinfadt et al. (2010), 
based on scaling of the thermal timescale at the basis of the outer convective zone 
with surface gravity. Two years later, the first pulsating ELM, J184037.78+642312.3, 
was reported by Hermes et al. (2012), with periods between 2000 s and 4900 s, 
much longer than the ones observed in ZZ Ceti stars. This can be expected 
since its stellar mass is ~ 0A7MQ. These long periods were identified with 
g—mode pulsations. Binarity was also confirmed, with a detection of a degen­
erate companion of ~ O.BMq and an orbital period of 4.6 h. Hermes et al. 
(2013) reported the detection of two variable ELMs (ELMV) with one of them, 
JI 11215.82+1117450.0, showing a period of 134 s apart from long periods in the 
range of 1792-2855 s. This short period is consistent with p—mode pulsations 
for the stellar masses of ELM white dwarfs.

The instability strip for ELMV white dwarfs extends in the effective tem­
perature range of 7800 — 10 000 K and from 6.0 to 6.8 in logy. To date 11 objects 
are known as variable ELMs, depicted with green circles in Figure 9. All but one 
object show long periods from 1100 s to 6300 s, while the short periods detected 
for JI 11215.82+1117450.0 are 134.275 s and 107.56 s (Hermes et ah, 2013). Vari­
ation amplitudes range from 0.002 to 0.044 mag. The instability strip of ELMV 
stars can be considered as the natural extension of the ZZ Ceti instability strip to 
low stellar masses, since the excitation mechanism is the same for both, i.e., the 
k—mechanism due to the opacity bump caused by partial ionization of hydrogen 
at the base of the hydrogen-rich envelope.

Pre-ELM stars are identified as the evolutionary progenitors of ELM white 
dwarfs. They are found at high luminosity, low logy compared to the ELMs,
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Figure 13. Characteristic frequencies for a DA white dwarf model 
with M* = 0.198Mo and Teff = 8950 K. The Brunt-Vãisãlã frequency 
(black line) and Lamb frequency (red line) for £ = 1 are plotted in 
a logarithmic scale. The propagation regions for pressure and gravity 
modes are indicated as P— and G—modes, respectively.

during the loop in the HR diagram caused by residual hydrogen-burning (see 
Figure 3, Istrate et al., 2014b). The surface composition is a mixture of hydrogen 
and helium (Gianninas et al., 2016), suggesting that chemical diffusion is being 
inhibited (Córsico & Althaus, 2016; Istrate et al., 2016).

The first variable pre-ELM was reported by Maxted et al. (2013), WASP 
J024743.37-251549.2, showing periods in the range 380-420 s. The star is a low 
mass object (0.186 M@^ in an eclipsing binary with an orbital period of 16 h with 
a 1.356 Mq companion. To date, there are 10 known objects (magenta triangle- 
up in Figure 9) with periods in the range of 300 to 5000 s and amplitudes of 
0.001-0.05 mag. The instability strip for pre-ELMs extends from 800 K to 13 000 
K in effective temperature and from 4.0 to 5.0 in surface gravity. Pulsations in 
pre-ELM stars are identified with high frequency p—modes and intermediate 
frequency mixed p — g modes. Due to the peculiar shape of the Brunt-Vãisãlã 
frequency in the inner regions, mixed modes show properties of p—modes in the 
outer parts and of g—modes in the inner parts of the star (Córsico & Althaus, 
2016). "

Jeffery & Saio (2013) found that modes in pre-ELM models are excited by 
the k—mechanism combined with convection, operating mainly in the second he­
lium ionization zone (He+ —> He++), provided that the driving region is depleted 
in hydrogen.

6. Blue Large Amplitude Pulsators

The Blue Large Amplitude Pulsators (BLAPs) were discovered by Pietrukowicz 
et al. (2017), as a result of a long time photometric study of the OGLE. These 
objects show regular brightness variations with periods in the range 20 - 40 min 
and amplitudes of 0.2 - 0.4 mag. The light curves have a characteristic sawtooth 
shape, similar to the shape of classical Cepheids and RR Lyrae-type stars that
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Figure 14. The location of the BLAPs on the log TPg — logy diagram 
(shaded rectangle area, blue star), along with other classes of pulsating 
stars: ELMVs (red dots), pre-ELMVs (orange dots), pulsating sdBs 
(violet triangles) and Ô Sct/SX Phe stars (green dots). Solid (dashed) 
black lines correspond to low-mass He-core pre-WD evolutionary tracks 
with Z = 0.01 (Z = 0.05). Credit: Romero et al. (2018).

pulsate in the fundamental radial mode. The BLAP stars are blue hot objects 
with effective temperatures of ~ 30 000 K, and logy ~ 4.2 — 4.6 similar to main 
sequence and pre-ELM stars. In addition, their effective temperature is similar 
to that of hot subdwarf stars. This is shown in Figure 14 where the position of the 
BLAPs in the Teg — logy plane is depicted, compared to variable hot subdwarfs 
and main sequences pulsators. Pietrukowicz et al. (2017) proposed that BLAPS, 
are either shell-burning, helium core, low mass stars or core helium burning pre- 
sdOB stars. Exploring the first possibility, Romero et al. (2018) proposed that 
BLAPs are hot pulsating pre-ELM WD stars with masses of ~ 0.30 — O.4OM0. 
They found that pulsations can be excited by the k—mechanism due to the iron 
peak elements, as it is the case for pulsating hot subdwarf stars, for fundamental 
and low radial order y—modes. Romero et al. (2018) found pulsation instability 
only in models where the total initial metallicity was increased to five times the 
solar metallicity. However, they proposed that only an enhancement of the iron 
peak elements in the driving region would be enough for pulsations to be excited. 
This was proved later by Byrne & Jeffery (2018).

Recently, a new class of pulsating stars was reported by Kupfer et al. (2019). 
They show similar effective temperatures as BLAPs but higher logy values, and 
thus are called high-logg-BLAPs (purple squares in Figure 9). They are monope­
riodic, showing large pulsation amplitudes of > 5%, with periods in the range
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200-475 s, consistent with radial oscillations. To test the evolutionary origin 
of these objects, Kupfer et al. (2019) computed models for low-mass helium­
core pre-white dwarfs and low mass core helium-burning stars, and found that 
the pulsation periods show better agreement with the pre-white dwarf models. 
This suggests that the high-logg-BLAPS and the BLAPS are both helium core 
pre-ELM white dwarfs with stellar masses of ~ 0.25 — 0.35Mo.

7. Final Remarks

This work was intended to give a brief review on pulsating white dwarf stars 
for those who whant to start learning about these very interesting objects. I 
recommend the reviews of Winget & Kepler (2008); Fontaine & Brassard (2008) 
and Córsico et al. (2019) and references therein, for more details.

The number of white dwarf in general, and of pulsating white dwarfs in par­
ticular, keeps growing due to large spectroscopic surveys and space and ground­
based observations. In particular, the Kepler satellite allowed us to discover new 
phenomena associated with stellar pulsations and to increase our knowledge on 
variable white dwarf stars. Further detection will allow us to study the interiors 
of white dwarfs through asteroseismology, and with that to uncover the evolution 
of our Galaxy.
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Abstract.
This Chapter provides a brief description of the different classes of 

pulsating A-F stars emphasising hybrids 5 Sct-7 Dor stars. A modelling 
technique for hybrid 5 Sct-7 Dor stars is presented along with the typ­
ical features that these stars “print” on their light curves and frequency 
spectra. Finally, we present a very different family of pulsating stars over­
lapping the region where pulsating A-F stars usually lie, the precursors of 
the so-called extremely low mass white dwarf stars. These stars have very 
similar atmospheric characteristics and their oscillation periods partially 
overlap making them difficult to discern. We discuss tools based on their 
seismic oscillation properties to distinguish them.

Key words: asteroseismology — stars: oscillations — stars: interiors

1. The Zoo of Pulsating A-F Stars

There are many families of pulsating stars grouped in different regions of the 
Hertzsprung-Russel (H-R) diagram. Figure 1 shows schematically some of these 
families in a seismic H-R diagram. Pulsating A-F stars lie approximately at the 
lower part of the classical instability strip and its intersection with the Main 
Sequence (MS) toward temperatures between 6700 and 8500 K. This interesting 
region of the seismic H-R diagram, harbours a large variety of families and sub­
families of pulsating stars with different physical and pulsational characteristics 
at different evolutionary stages (pre-MS, MS and post-MS).

Among these families, the best known are: solar-like stars with solar-like 
oscillations, the rapid oscillators Ap stars, SX Phoenicis stars, A Boo stars, 7 
Dor, 5 Set and hybrids 5 Sct-7 Dor stars. We will begin this section with a brief 
description of each of these families.

1.1. Solar-Like Stars With Solar-Like Oscillations
The internal structure of these stars is similar to the Sun, they have a radia­
tive core with a large convective envelope. In general, stellar pulsations can be 
classified according to their driving mechanism in self-excited oscillations and 
stochastic oscillations. Self-excited oscillations arise from a perturbation of the 
energy flux resulting in a heat-engine mechanism. If the variation is in the opac­
ity, we have the «-mechanism; if the variation carnes from the temperature rising

215
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Figure 1. Seismic H-R diagram showing different families of pulsat­
ing stars. The classical instability strip is indicated in red lines, the 
beginning of the MS in black dashed line and the cooling track in black 
dotted line.
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from nuclear reactions, then the operating mechanism is the e-mechanism. On 
the other hand, stochastic oscillations are excited and damped usually by turbu­
lent convection. Solar-like oscillations are driven stochastically and are expected 
to be present in all stars with outer convective zones.

1.2. Rapidly Oscillating Ap Stars

Rapidly Oscillating Ap (RoAp) stars belong to Population I. They have a par­
ticular chemical surface composition caused by atomic diffusion (specifically due 
to the effect of gravitational settling and radiative levitation). One of their main 
characteristics is their strong magnetic field. In addition, they usually present 
spots and stratification (Aerts et al., 2010). Their oscillation periods are between 
~ 4.7 and 21 min and they correspond to high radial order, low degree pressure 
modes (or p-modes).

1.3. SX Phoenicis Stars

These stars belong to Population II and are characterised by low metallicities 
between 0.002 and 0.0002. SX Phoenicis (SX Phe) stars have masses in the range 
0.9 to 1.15 Mq and oscillations very similar to those of 5 Set stars. They are 
thought to be blue straggler stars, i.e. MS stars in a open or globular cluster that 
are more luminous and bluer than stars at the MS turnoff point for the cluster. 
One possible explanation for this behaviour lies in mass transfer between two 
stars born in a binary star system. The more massive star will evolve first and 
as it expands, will overflow its Roche lobe. Then mass will quickly transfer from 
the initially more massive companion on to the less massive one and this would 
explain why there would be MS stars more massive than other stars in the cluster 
which have already evolved off the MS.

1.4. A Boo Stars

This family of pulsating A-F stars, consists of Population I stars with a superficial 
chemical impoverishment possibly due to the accretion of metal deficient gas in 
the circumstellar environment. Recent studies indicate that not all A Boo stars 
are young and are found at a variety of MS ages (Murphy et al., 2020). Their 
oscillations are similar to 5 Set stars.

1.5. 5 Set Stars

One of the most representative group of pulsating A-F stars are 5 Set stars. They 
can be found on the MS and pre-MS with masses usually between 1.5 and 2.5 
Mq. They oscillate in non-radial p-modes of low to intermediate radial order, 
and also show radial modes, with periods usually between 0.008 and 0.42 days 
which allow to probe the external layers of the star. These oscillations are driven 
mainly by the «-mechanism operating in the partial ionisation He layer and the 
turbulent pressure acting in the H ionisation zone (Antoci et al., 2014). Their 
internal structure is characterised by a convective core surrounded by a radiative 
layer with a thin outer convective layer. In the Sun, this layer encompasses 
approximately 30% of the Sun, while in 5 Set stars this layer encompasses ~ 1%.
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1.6. 7 Dor Stars

Another important group among pulsating A-F stars is formed by 7 Dor stars. 
These stars are found in pre-MS, MS and post-MS. In general, they are less 
massive than 5 Set stars, with masses between 1.5 and 1.8 Me and effective tem­
peratures between 6700 K and 7500 K. They pulsate in high radial order gravity­
modes (or g-modes) with periods around 8 hrs and 3 d driven by the convective 
blocking mechanism. In 7 Dor stars, the convective envelope is thought to be 
deeply enough to reach the layer where the «-mechanism usually operates, i.e. 
the ionisation He II layer. The heat flux is then conducted by convection and 
the «-mechanism is suppressed. The presence of g-modes in these stars allows 
us to probe the near-to-core layers.

1.7. Hybrid 5 Sct-7 Dor Stars

These stars pulsate in many radial and non-radial p- and g-modes which makes 
them excellent targets for asteroseismology. The simultaneous presence of p- and 
g- modes allows to explore their external layers as well as the near-to-core layers, 
respectively. A typical light curve of this kind of stars often shows two separate 
ranges of frequencies: one corresponding to high frequencies characteristic of 5 
Set (p-modes) and the other one at low frequencies usually characteristic of 7 Dor 
(g-modes) (see Section 2.1). They usually lie in the overlapping instability region 
of 5 Set and 7 Dor stars. However, the advance of space missions opened new 
interrogations due to the interesting results of such observations. For instance, 
several new hybrid 5 Sct-7 Dor stars were found thanks to these missions and 
some of them lie outside their predicted instability strip. Moreover, the same is 
true for 5 Set and 7 Dor stars. These observations showed that hybrid 5 Sct-7 
Dor stars are more common than expected and also made us wonder about the 
intrinsic characteristics of 5 Set, 7 Dor, and hybrid stars, along with the driving 
mechanisms operating in these stars. It is believed that both mechanisms operate 
in hybrid stars: the «-mechanism and the convective blocking mechanism, but 
up to date these have not been further analyzed.

2. Asteroseismology of Hybrid 5 Set- 7 Dor Stars

As we mentioned before, asteroseismology is a magnificent tool which allows us 
to obtain valuable information about the interior variable stars and the physical 
processes that take place inside them. The main aims of asteroseismic modelling 
of stars are to get high precision in astrophysical parameters such as the mass 
(M), the radius (R) and the age; and to improve input physics of the stars by 
means of a comparison between theory and observations. The input physics of the 
target object is first adjusted to derive a stellar model and theoretical predictions 
for oscillations. Then, these predictions are compared to the observed proper­
ties of identified oscillation modes through photometric, spectroscopic and/or 
astrometric observations.

Next, we will see the features commonly found in the light curves of hybrid 
5 Sct-7 Dor stars and we will review the main steps for a particular kind of 
modelling of these stars.
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2.1. Light Curves and Frequency Analysis of Hybrid 5 Sct-7 Dor 
Stars

In this section, we will introduce the main features usually present in the fre­
quency spectra of hybrid 5 Sct-7 Dor stars as well as some corrections that 
usually have to be made in the light curves, specially for those provided by the 
COnvection Rotation et Transits planétaires (C0R0T) CNES/ESA space mis­
sion (Auvergne et al., 2009) before we can perform the frequency analysis. This 
space mission was launched in 2006 and offers five observing runs with durations 
of 59, 28, 157, 148 and 20 days with different integration time: 1, 32 and 512 s.

One of the phenomena that usually affect light curves and should be in­
spected before performing the frequency analysis is the impact of cosmic rays. 
These impacts lead to individual outlier measurements that should be removed 
before the frequency analysis. Another phenomenon we have to take into account 
for C0R0T light curves is that they usually have a slope which translates into 
frequencies below 0.25 c/d (Chapellier & Mathias, 2013). These frequecies must 
not be taken into account during the frequency analysis. Finally, it is important 
to remove the rotational frequency of the satellite (Jorb = 13.97213 c/d) and its 
harmonics (n * forb), in order to employ only pulsational frequencies during the 
modelling.

Let us consider as example the star C0R0T ID 102358531 observed during 
the third C0R0T long run, LRaO3, which targeted the Anti-Galactic center. 
According to the EXODAT database (Deleuil et al., 2009) this star has a = 
6hl2m29.58s, 5 = +4°58,54.2244", it has an A0V spectral type and 2MASS 
photometry J = 13.363, H = 13.191 and K = 13.085. In Figure 2 we show 
the resulting light curve of C0R0T ID 102358531. This light curve clearly shows 
a hybrid nature for this star, since it displays both low and high frequency 
components corresponding to the 7 Dor and 5 Set domains, respectively.

After cleaning the light curve we are in conditions to derive the frequency 
spectrum yielded by the Fourier transform in order to obtain the individual fre­
quencies. As expected, the resulting frequencies from light curves of hybrid 5 
Sct-7 Dor stars, are usually grouped within two different domains: one corre­
sponding to low frequencies typically related to 7 Dor stars, and another domain 
at higher frequencies typically associated with 5 Set stars. In Figure 3 we show 
these two groups in the frequencies spectrum of C0R0T 102358531.

Once we obtained the individual frequencies, the search of pattern begins 
with the aim to identify each frequency and to perform later an asteroseismic 
modelling. There are different kinds of patterns to look for during the frequency 
analysis of hybrid stars. We will mention here the mean period spacing of g- 
modes and rotational splittings.

As we mentioned before, hybrid 5 Sct-7 Dor stars oscillate in high order 
g-modes. According to the asymptotic theory (Tassoul, 1980) the difference be­
tween the periods of two consecutive radial order modes with the same harmonic 
degree (t) tends to be constant for higher radial order modes. Therefore, if we 
find consecutive equidistant periods in the 7 Dor range, these will probably cor­
respond to an asymptotic (n >> t) series of g-modes with the same t and high 
radial order. These series will allow us to derive later the mean period spacing 
of g-modes (if the series has n periods, II¿, equally separated, then the mean 
period spacing is (FR — IIi)/(n — 1)). This quantity is extremely useful for the
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Figure 2. Light curve of the star CoRoT 102358531 with different 
timescales, a subset over 10 d at the top and a zoom into one day 
subset at the bottom.
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Frequency [c/d]

Figure 3. The resulting frequencies and their corresponding ampli­
tudes in CoRoT 102358531. Two different domains are distinguished 
for this hybrid 5 Set- 7 Dor star.
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study of hybrid 5 Sct-7 Dor stars since it can be employed as an indicator of the 
evolutionary stages of these stars.

The asymptotic period spacing for g-modes can be written in terms of the 
Brunt-Vãisãlã frequency (Ny.

An?
2tt2 r fb N , "

—. / —dr
y/l{l + 1) LVa z' . (D

where a and b are the inner and outer boundaries of the propagation zone of 
g-modes, respectively. As stars evolve on the MS and consume the H in the core, 
the Brunt-Vaisala (B-V) frequency, which governs the behaviour of g-modes, is 
affected by the change of the convective core. For masses greater than ~ 1.5MO, 
the core shrinks as the star evolves and its edge moves inward. In the case of 
hybrid stars, the propagation region of g-modes belongs to the inner region of 
the star and the lower boundary of this region begins immediately after the edge 
of the convective core. Therefore, during the evolution, the integral increases 
since it expands toward inner regions resulting in a decreasing asymptotic period 
spacing of g-modes and therefore a decreasing mean period spacing. This allows 
us to employ the mean period spacing, usually detected in hybrid stars, to place 
restrictions for the modelling of these stars.

Another extremely useful patterns that should be investigated during the 
frequency analysis of these objects are rotational splittings. Pulsating A-F stars 
are intermediate to fast rotators. In rotating stars, modes can be separated into 
several components forming multiplets. Considering rigid rotation and the first 
order perturbation theory, the components of the rotational multiplets are given 
by:

^nlm = ^nl T W.(l C^ — (2) Z7T
where V[n is the central mode of the multiplet, Cni is the Ledoux constant and 
D/27T is the rotational frequency of the star. The Ledoux constant tends to zero 
for p-modes with an increase in the radial order and tends to !/(<?(<? + 1)) for 
g-modes. For instance, if we find in the 5 Set regime, the next frequencies series: 
vni — f, Vnb uni + / they might correspond to a triplet (£ = 1) and we would be 
able to derive the rotational velocity.

This information along with any other information we can obtain through 
other methods such as spectroscopy and astrometry should be employed in the 
theoretical modelling of stars. Next subsection will be devoted to the modelling 
of hybrid 5 Sct-7 Dor stars.

2.2. Modelling Hybrid 5 Sct-7 Dor Stars
There are different ways to perform a modelling of a star. In this subsection we 
will describe a classical grid-based modelling applied to hybrid 5 Sct-7 Dor stars 
based on statistic searches. This procedure is fully described in Sánchez Arias 
et al. (2017) along with its application to 5 hybrid stars.

The first step in the modelling of stellar interiors is to select a suitable 
code to create the models. There are several codes to compute stellar structure 
and pulsational models. Among the best known codes to develop stellar interior



Pulsating A-F Stars 223

structure models we can mention MESA (Paxton et al., 2011), CESAM2k (Morel 
& Lebreton, 2008) and LPCODE (Althaus et al., 2005). The first two mentioned 
codes allow the development of stellar interior models for a wide range of masses 
at different evolutionary stages including also different physical phenomena such 
as rotation, different theories of convection and diffusion of chemical elements, 
among others. On the other hand, LPCODE was fully developed at La Plata Ob­
servatory and is also widely employed to simulate the evolution of low-mass stars, 
mainly, at different stages. This code is coupled to an oscillation code named 
LP-PUL(Córsico et al., 2006) which allows computing adiabatic oscillation and 
those which take into account the excitation mechanism, i.e. non-adiabatic oscil­
lations. Apart from LP-PUL, we can mention ADIPLS (Christensen-Dalsgaard, 
2008) and GYRE (Townsend & Teitler, 2013) among the best-known oscillation 
codes. Both codes allow the calculation of adiabatic oscillations and the latter 
also calculate non-adiabatic oscillations.

Once we have selected a suitable code, we must set the input physics for 
the target object in order to obtain representative models. The main ingredients 
to be set are the nuclear reaction network, the opacity tables, the equation of 
state, a theory for the mixing of elements, a theory for stellar rotation if any, 
to decide which and how extra mixing process are going to be included, which 
kind of oscillations we want to study, etc. The input physics should be carefully 
selected, since the output model strongly depends on it, obviously. We encourage 
the reader to look for the details of the input physics in Sanchez Arias et al. 
(2017) and we will focus here in the steps of a particular modelling technique 
applied to the hybrid ¿Sct-7 Dor stars.

The procedure we will describe next is a grid-based modelling consisting of 
a statistic search of the model which best fits the observations in a previously 
constructed grid of representative models of hybrid 5 Sct-7 Dor stars. After hav­
ing carefully selected the input physics in the code, the next step is to construct 
a grid of representative models. In Figure 4 we can see the location of a sample 
of 5 Set (open circles), 7 Dor (grey squares), and hybrid 5 Sct-7 Dor (red star 
symbols) stars taken from Grigahcène et al. (2010) in an H-R diagram. The grid 
should fully cover the region where hybrid 5 Sct-7 Dor stars usually lie in the H­
R diagram in order to employ it for different targets. Precisely, with the aim to 
encompass these objects with our models, we varied different parameters in our 
grid such as the mass (1.2 < M*/Me < 2.2), the metallicity (0.01 < Z < 0.02), 
the overshooting1 parameter (0 < f < 0.03) at different evolutionary stages 
from the Zero Age Main Sequence (ZAMS) to the Terminal Age Main Sequence 
(TAMS). '

1Overshooting is the mixing of chemical elements beyond the formal convective boundary set 
by the Schwarzschild criterion. This phenomenon extends the evolutionary tracks during the 
evolution on the MS since extra mixing adds more H to the core to be burnt.

For each evolutionary sequence, we recorded the stellar structure model ev­
ery 10 K approximately and we computed for them the adiabatic oscillations, 
specifically we calculated radial modes as well as non radial p- and g-modes with 
harmonic degree of 1, 2 and 3 with periods between 1200 s and 300000 s encom­
passing widely the usual periods of the modes found in these stars. Some of the 
evolutionary sequences of this grid are shown in Figure 4. Those corresponding



224 J. P. Sánchez Arias

to a metallicity of 0.01 with an overshooting parameter of 0.03 are depicted in 
cyan; while those in black correspond to a metallicity of 0.015 and no overshoot­
ing, for different masses indicated with black numbers. It can be seen that the 
models of the grid encompass the occupied region by these observed stars.

Once we have a grid of representative models for the kind of object we want 
to study, we are able to perform a search for the model that best reproduces 
the observations of a given target star. The usually procedure in this grid­
based modelling is to calculate a “quality function” for each model. This quality 
function compares observationally derived quantities with those calculated from 
the models. This function should reflect the nature of the objects we want to 
model, which in this case are hybrid 5 Sct-7 Dor stars. For instance, hybrid stars 
oscillate in high order g-modes (as 7 Dor stars) and low- to intermediate-order 
p-modes (as 5 Set stars). As we mentioned before (Section 2.1) it is possible to 
recognise high order g-mode features during the frequency analysis and employ 
that pattern as a constraint in the search of the best model. Therefore, including 
this pattern (or the mean period spacing) in the quality function of hybrid 5 Sct-7 
Dor stars, along with the information of the individual frequency p- and g-modes, 
boost this search efficiency.

As an example of the modelling of hybrid stars, we show the application 
of this procedure for HD 49343 as it was performed in Sánchez Arias et al. 
(2017). This star was previously studied in Brunsden et al. (2015). We used the 
information about the individual periods in the 7 Dor range ([28800-288000]s), as 
well as in the 5 Set range ([1080-28800]s) and the observed mean period spacing 
of g-modes (AH = 2030.4s) to create the “quality function”.

First we calculated the mean period spacing of g-modes for each model. In 
Figure 5 we show the mean period spacing of g-modes calculated in the range 
of the observed g-mode periods, for those models of the grid with Z = 0.01 and 
f = 0.01 as an example. Each curve corresponds to certain mass and models 
in the ZAMS have higher mean period spacings (see Section 2.1). As already 
mentioned, the mean period spacing of g-modes decreases with the evolution. 
Therefore, this quantity can be used as an indicator of the evolutionary stage of 
hybrid 5 Sct-7 Dor stars. After calculating this quantity, we selected for each M*, 
Z and f, the model which best reproduces the mean period spacing of g-modes 
derived from observations, i.e. those models closer to the straight line in Figure 
5.

Next, for the models selected in the previous step we performed a period- 
to-period fit of p-modes as well as of g-modes, including this information in the 
quality function. The resulting quality function is:

[Anw - ah]2 

^An^'
(3)

where AHn is the calculated mean period spacing that best reproduces the ob­
served one (AH) for a certain Z, M* and /, ct^jj is the error corresponding to 
the observed mean period spacing, is the sum of the difference between the 
periods of p-modes calculated for each model and the period observed in the 5 
Set range divided by the error corresponding to the observed frequency; and Xj 
is the same for individual g-modes. This quality function has its own peculiar-



Pulsating A-F Stars 225

Figure 4. HR diagram showing evolutionary tracks for stellar models 
with different masses (1.2Mq < M* < 2.2Me), Z = 0.015 and without 
overshooting (f = 0) in black, and Z = 0.01 and f = 0.03 in light 
blue, from ZAMS to TAMS. The value of the stellar mass (M*) is 
indicated for a subset of tracks (those displayed in solid lines). Black, 
red, green, and blue dots correspond to the location of stellar models 
with M*/M0 = 1.3,1.7 and 2.1 having a central H abundance of X^ = 
0.7, 0.5, 0.3, 0.1. respectively. A sample of 5 Set (open circles). 7 Dor 
(grey squares), and hybrid 5 Sct-7 Dor (red star symbols) stars taken 
from Grigahcène et al. (2010) are included for illustrative purposes. 
Also, the boundaries of the 5 Set (violet dot-dashed lines) and 7 Dor 
(green dashed lines) theoretical instability strips from Dupret et al. 
(2005) are plotted. Extracted from Sánchez Arias et al. (2017).
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Figure 5. Mean period spacing vs. effective temperature for grid 
models calculated with Z = 0.01 and f = 0.01. The straight line 
represents the observed mean period spacing for g-modes calculated 
from observations of HD 49434. Extracted from Sánchez Arias et al. 
(2017).
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ities depending on the observed star. For instance, if the harmonic degree was 
determined for a certain mode, this quality function can be properly adjusted in 
order to reflect this information, as it has been performed in Sánchez Arias et al. 
(2017) for every considered star.

Finally, we search for the model with the minimum quality function, which 
will be the model that best reproduces the observed frequency spectrum of the 
star.

As it has been mentioned, this is only one way to perform an asteroseismic 
modelling based on a grid of models. There are several ways to search for a 
representative model, for instance you can perform a similar search including 
more information in the quality function such as spectroscopic data.

As a result of the modelling, we obtain valuable information about our 
object. For example, in the case of HD 49434, we derived the next astrophysical 
parameters: M* = 1.75A70, Z = 0.01, f = 0.01, Te^ = 7399/7, logg = 3.85, 
Rstar = 2.57RO, Age = 1169.08 x 106yr, U = 19.39L0 and ÃH = 2045.42s.

3. Comparing the Asteroseismic Properties of Pulsating Pre-extremely 
Low Mass White Dwarf and 5 Scuti Stars.

There are several problems that can be addressed with asteroseismology. The 
problem we will focus on in this section concerns the distinction between two very 
different families of pulsating stars, which have similar atmospherics parameters 
CW//- and logg).

Thanks to the advance of space missions, new kinds of families started to be 
discovered. The family of variable stars we are interested in, are the precursors of 
the so-called the extremely low mass white dwarf stars or pre-ELMV. Extremely 
low mass white dwarf (ELM) stars (or low mass He-core white dwarfs) are the 
result of a strong mass transfer event at the red giant stage of low mass star 
evolution in close binary system. Their masses are below 0.3 solar masses and 
they oscillate in p- and g-modes driven by the «-mechanism operating in the 
second He ionisation zone with periods between 380 and 3500 s approximately. 
The precursors of these white dwarf stars lie before the cooling sequence of 
ELM white dwarfs, in the region where pulsating A-F stars usually are (see 
Figure 6). This is one of the reasons that makes them difficult to distinguish 
from some pulsating A-F stars, specially 5 Set stars, as we will see next. The 
correct distinction between these types of pulsating stars will help to discover new 
members for pre-ELMV white dwarfs and to understand the formation channels 
for this new family of pulsating white dwarf stars.

In Sánchez Arias et al. (2018) we provided asteroseismic tools in order to 
distinguish between these two different families, the 5 Set stars and pre-ELMV 
white dwarf stars. Here we will present a brief resume on such tools aimed to 
highlight the power of asteroseismology.

Figure 6 shows the position in the HR diagram of 5 Set stars in white 
circles from Uytterhoeven et al. (2011), Bradley et al. (2015) and Bowman et al. 
(2016). SX Phe stars are those from Balona & Nemec (2012) depicted in magenta 
circles. With blue diamonds we show the position of the known pre-ELMVs 
(Maxted et al., 2013, 2014; Gianninas et al., 2016), while the ELMVs are depicted 
with light green triangles (Hermes et al., 2012, 2013a,b; Kilic et al., 2015; Bell
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et al., 2017). It is also displayed the position of the pulsating object J0757+1448 
reported for the first time in Sánchez Arias et al. (2018) with a cyan diamond and 
the cyan squares indicate the position of two stars reported by Corti et al. (2016), 
JI730+0706 and J1458+0707. These three stars lie in our region of interest where 
pre-ELMV stars can be confused with 5 Set star. The nature of these objects was 
discussed in the previously mentioned paper. We have also included theoretical 
evolutionary tracks for low mass He-core WD from Althaus et al. (2013) (dotted 
black lines) and Serenelli et al. (2001) (dashed black lines). Black numbers 
correspond to the values of the stellar mass of low mass He-core WD evolutionary 
tracks. In the same figure we illustrate MS evolutionary tracks (with red lines), 
for different values of metallicity (Z), mass (M*) and overshooting parameter 
(f) from Sánchez Arias et al. (2017). Besides, we included the location of the 
theoretical blue edge and the empirical red edge of the 5 Set instability strip 
from Pamyatnykh (1999), and also the blue edge of the pre-ELMV instability 
strip (Córsico et al., 2016).

From this figure, we can see that the theoretical evolutionary sequences 
of pre-ELMV stars partially overlap with those corresponding to MS stars and 
the region where pre-ELMVs can lie partially overlaps with the region occupied 
by the 5 Set stars. Besides, we note that both instability strips overlap for 
3 < logg < 4.4. In summary, pre-ELMV and 5 Set stars have very similar 
atmospheric parameters Te^ and logg, their evolutionary sequences partially 
overlap as well as their instability strips. In addition, both families show an 
overlapping range of pulsating periods (see Figure 7). Therefore, some pre-ELMV 
stars might be polluting the region where 5 Set usually lie. With the aim to 
provide tools to discover more interesting pre-ELMV stars, and distinguish them 
from 5 Set stars, we analysed and compared theoretical models of their structure 
and oscillations. The selected models are represented in orange triangles in 
Figure 6.

Although both kinds of families have the previously mentioned similarities, 
pre-ELMV and 5 Set stars are at very different stages of their evolution and 
their internal structure is different. For instance, 5 Set stars have radii between 
1.5 and 3.5 Re while pre-ELMV stars with the same logg have ~ 0.6 Rq and 
the density for 5 Set stars are much lower than for pre-ELMV white dwarf stars. 
This fact is of course reflected in their pulsational behaviour, therefore employing 
only asteroseismology should allow us to distinguish between these kind of stars 
despite their similar atmospheric parameters.

In order to do this, in Sánchez Arias et al. (2018) we selected, as we men­
tioned, two sets of models of each type of family in different regions of the H-R 
diagram in which these families can be incorrectly classified, and we measured 
the period differences at different ranges of mode periods for each type of stars. 
Specifically we found that the mean period difference of p-modes of consecutive 
radial orders for 5 Set model is at least four times larger than the mean period 
spacing (or the mean period difference of g-modes of consecutive radial order) for 
the pre-ELMV white dwarf model in the period range [2000 — 4600] s. Therefore, 
if we detect two periods and we calculate their differences, assuming they have 
consecutive radial order, we can say whether the star belongs to the pre-ELMV 
family or to the 5 Set star family according to the obtained value. However, mode
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Figure 6. Te^ — logg diagram showing the location of ELMV stars 
(light green triangles), pre-ELMV stars (blue diamonds) and 5 Set stars 
(white circles) including SX Phe stars (magenta circles). The atmo­
spheric parameters are extracted from different papers detailed in the 
main text. The error bars for the 5 Set and the SX Phe stars are 
depicted in black and magenta respectively. Also, we included the the­
oretical evolutionary tracks of low mass He-core WDs (black dotted and 
dashed lines) from Althaus et al. (2013) and Serenelli et al. (2001), and 
MS evolutionary tracks (red lines) from Sánchez Arias et al. (2017). 
Black numbers correspond to different values of the stellar mass of low 
mass He-core WDs, whereas red numbers are associated to the value 
of the mass, metallicity and overshooting parameter of MS stars. It is 
also shown the location of the theoretical blue edge and the empirical 
red edge of 5 Set instability strip from Pamyatnykh (1999), and also 
the blue edge of the pre-ELMV instability strip (Córsico et al., 2016). 
Orange triangles show the position of the template models. The cyan 
squares indicate the position of JI730+0706 and J1458+0707, and the 
cyan diamond represents the position of J0757+1448. Figure extracted 
from Sánchez Arias et al. (2018).
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Figure 7. Scheme showing the usually ranges of the observed modes 
periods for pre-ELMV in black, 5 Set in red and 7 Dor stars in green. 
The 7 Dor range extends up to ^260000 s.

identification is not an easy task and in general we cannot verify the hypothesis 
of consecutive radial order for the observed periods.

Therefore, we can employ another tool which does not depend on mode 
classification: the rate of period change. As stars evolve their structure changes, 
therefore their frequencies will also change since they depend on the stellar struc­
ture. On the MS the periods change slowly as the stars burn H in their core, 
while in the stages prior to the cooling sequence of white dwarf stars, they spend 
just a few years crossing the HR diagram very quickly. Therefore the rate of 
period change of 5 Set stars and pulsating pre-ELM white dwarf stars should 
be very different. This is exactly what we found in our models. The predicted 
rate of period change in 5 Set stars is ^ « 5.45 x 105 s/yr, and for pre-ELMV 
WD stars is ^ « —1.42 x It)3 s/yr. Therefore, this difference allows us to 
distinguish between these two kinds of families without mode identification and 
is based only on the oscillation properties of these stars.

4. Summary

In this Chapter we briefly characterised pulsating A-F stars. The differences 
present between each family belonging to this interesting group allow us to in­
vestigate different physical phenomena such as the differential rotation, magnetic 
field, conservation of angular transport and excitation mechanisms in low mass 
stars at the pre-MS, MS and post-MS phases.

We focused on hybrid 5 Sct-7 Dor stars since the simultaneous presence of 
p- and g- modes allows us to probe their internal layers as well as their external 
regions turning them into excellent targets for asteroseismology. We have intro­
duced the main characteristics in the light curves of these objects, along with 
some of the most useful features in the frequency spectra we should recognise to
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perforin a modelling of the star. Furthermore, we briefly described one method 
to perform a grid-based modelling of hybrids 5 Sct-7 Dor.

Finally we introduced a very different family of pulsating stars, pre-ELMV 
white dwarf stars, which lie very close to pulsating A-F stars and might be pol­
luting the region where 5 Set stars usually lie. We showed how asteroseismology 
can be employed to distinguish them and we presented two different asteroseismic 
tools to achieve this goal in order to discover new interesting pulsating pre-ELM 
white dwarf stars.
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Abstract. The post-main sequence evolution of massive stars still bears 
many unknowns. In particular, the physical processes involved in trigger­
ing enhanced mass-loss or eruptions are yet to be established. In this 
Chapter, the post-main sequence evolution of massive stars, and the var­
ious phases which are well-known for their mass ejections, are briefly 
touched upon. Amongst those transition phases, two classes of objects 
are discussed in more detail: the B-type supergiants and the Yellow 
Hypergiants. Their ability to perform pulsations is presented based on 
observational and theoretical evidences. Moreover, the possibility of a 
pulsation-mass-loss relation in these two classes of objects is delineated.

Key words: asteroseismology — instabilities — stars: oscillations — 
stars: winds, outflows

1. Introduction to Massive Stars

Massive stars are stars that are born with initial masses > 8 Mo. They are few in 
numbers, but their significance lies in their powerful winds with which they enrich 
their environments throughout their entire life in both momentum and chemically 
processed material. With their enormous energy transfer, in particular during 
their explosion as powerful supernovae, massive stars may trigger the formation 
of next generations of stars and planets. Consequently, they play a crucial role 
in the dynamical and chemical evolution of their host galaxies. It is therefore 
surprising that stellar evolution theory is still most uncertain for massive stars, 
despite their importance.

1.1. Evolution of Massive Stars - Theoretical Aspects
From a theoretical point of view, the various phases in the life of a massive star 
are clearly defined, namely in terms of the individual nuclear burning stages. On 
the main-sequence, the star burns hydrogen in its core into helium. As soon as 
the hydrogen core is exhausted, the star turns off the main-sequence and performs 
pure hydrogen shell-burning in a layer around the core, whereas the core itself 
contracts and heats until helium burning sets in. This sequence of core and shell 
burning into heavier and heavier elements continues until the core consists only 
of the iron ashes. In this final pre-supernova stage, the iron core is surrounded 
by multiple shell-burning layers, of which the hydrogen-burning layer is closest 
to the stellar surface, underneath the outermost, non-burning stellar hydrogen 
envelope.
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From stellar evolution theory, all these individual burning phases can be 
unambiguously determined and chronologically ordered. However, these phases 
refer purely to the properties inherent to the stellar interior. They are not di­
rectly accessible by observations. Moreover, stars can rotate and undergo strong 
mass-loss, influencing and altering significantly the internal structure and surface 
appearance of massive stars.

Stellar Winds An excellent introduction into the subject of stellar winds is 
provided by the textbook of Larners & Cassinelli (1999). Here, only some general 
aspects are briefly outlined.

Multiply ionized elements can have excited states with extremely short life­
times. If such a state is excited due to the absorption of a photon, the de­
excitation happens quasi instantaneously. Lines of such transitions are called 
resonance lines. Based on their energies, these resonance lines typically arise 
within the ultraviolet spectral range.

Ions of various elements in the upper atmosphere of a hot, massive star 
can produce resonance lines. These ions continuously absorb photons from the 
underlying photosphere into their resonance states. The re-emission occurs into 
the solid angle 4tt, resulting in a net momentum transfer from the photospheric 
photons to the ions in predominantly radial direction. Consequently, the ions 
experience a constant radial "push" and as such an acceleration beyond the 
sonic point. Collisions between these accelerated ions and other elements and 
free electrons in their vicinity drag these particles along, leading to a global 
removal of matter from the stellar surface known as mass-loss via line-driven 
winds. Depending on the physical properties of the star, the mass-loss during 
some evolutionary phases can be so high, that the outer layers of the star are 
completely peeled off. If this happens, deeper layers, which are enriched in 
heavier elements due to shell-burning processes, show up on the stellar surface, 
and the star appears "stripped".

Stellar Rotation Rotation in the interior of stars can lead to mixing and hence 
transportation of chemically processed material from deeper layers to the stellar 
surface. But rotation has also another effect: it can deform the shape of the 
star. With increasing rotation speed stars loose their spherical shape and instead 
appear flattened. The best known rotating body that displays a deviation from 
spherical symmetry is the Earth with its equatorial radius exceeding the polar 
one by about 21km, corresponding to a flattening of 0.00335.

The parameter co = t’rot,eq/Writ defines the ratio between the equatorial 
rotation velocity, vrot,eq> and the critical velocity, vCTit- The latter is given by 
-Cent = y/GM^jR^, where G is the gravitational constant, Me$ is the effective 
stellar mass, i.e. the stellar mass reduced by the effects of radiation pressure 
due to electron scattering, and Req is the stellar radius at the equator. Critical 
rotation is reached if w = 1, meaning that the centrifugal force balances the 
gravitational force. In this case, Req = 1.5Rpoie, where Rpoie is the radius at the 
pole, and a maximum flattening of (Req — Rpoie)/^poie = 0.5 is reached.

The deformation of the stellar shape has a further consequence. The com­
pression of the polar regions results in a heating of the poles, whereas the ex­
pansion of the equatorial regions leads to a cooling. This effect is also known 
as gravitational darkening. The gradient in surface temperature from the pole
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to the equator leads also to a latitude dependence of the mass flux. As long as 
no change in the ionization state of the wind material occurs from the polar to 
the equatorial region, rotating stars tend to have higher mass flux over the poles 
and less mass flux along equatorial regions (see Figure 2 in Kraus, 2006). The 
situation may be different in rapidly rotating stars, in which the ionization state 
of the gas in the wind can change at a certain latitude due to the drastic drop in 
surface temperature. For such stars higher mass flux may be expected in equa­
torial regions due to the increased number of ions suitable for line-driving. This 
effect is known as the rotation induced bi-stability mechanism (Pelupessy et al., 
2000). Moreover, the star may switch from the classical fast solution (Castor 
et al., 1975) to the so-called slow solution (Curé, 2004) leading also to increased 
mass-loss in equatorial regions.

The real rotation speed of a star is difficult to guess, because usually the 
inclination of the rotation axis is not known. Therefore, observations typically 
deliver only ?yot,eqsin?, i.e. the rotation velocity projected to the line-of-sight, 
which is a lower limit to the real rotation velocity. Estimates of projected rota­
tion velocities for massive single-star non-supergiant samples, performed in the 
Tarantula (30 Dor) nebula of the Large Magellanic Cloud, revealed a velocity dis­
tribution with a strong peak at low values (~ 80kms 1) and a high-velocity tail 
(up to 600kms-1) for O-type stars (16 — 60 M0, Ramirez-Agudelo et al., 2013), 
whereas B-type stars (8 — 16 M0, Dufton et al., 2013) can show a bi-modal dis­
tribution with a significant fraction of stars having projected rotation velocities 
< 100kms 1 and another peak spreading from 200 to 250kms *. Also for these 
type of stars a high-velocity tail (up to ~ 500kms 1) is observed, meaning that 
a small fraction of O and B-type stars are born with intrinsic rotation speeds 
corresponding to a significant fraction of their critical velocities.

A deeper discussion of the effects of rotation on the physics and evolution 
of massive stars is provided by the excellent textbook of Maeder (2009).

Evolutionary Tracks To predict the properties of massive stars along their en­
tire life path, various research groups have developed their own computer codes 
(see Martins & Palacios, 2013, for an overview). All these codes are pure one­
dimensional and utilize a variety of input physics that is implemented in different 
ways. Computation of evolutionary tracks of massive stars is performed from the 
point of ignition of hydrogen in the stellar cores, defined as the zero-age main- 
sequence (ZAMS), up to pre-supernova stages. But comparison of the model 
predictions for the evolutionary track of a massive star with initially identical 
properties clearly shows a huge diversity and strong disagreement, especially after 
the star turns off from the main sequence. This was impressively demonstrated 
by the analysis of Martins & Palacios (2013) (see, e.g., their Figure 4).

Moreover, both effects, rotation and mass-loss, significantly influence and 
alter the evolution of massive stars as previously discussed. Rotation drives the 
internal mixing and influences mass-loss rates already on the main-sequence. 
Consequently, stars with initially identical masses on the ZAMS but diverse 
rotation velocities will end up with different properties when they reach the end 
of their main-sequence evolution (Meynet & Maeder, 2000).

Given the uncertainties in stellar models and in the (usually poorly con­
straint) initial physical properties such as rotation, it is tricky to assign a star a
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proper initial mass and evolutionary state from a pure comparison of its position 
in the Hertzsprung-Russell (HR) diagram with evolutionary model predictions.

1.2. Observed Spectroscopic Phases
From the observational point of view, massive stars in their post-main sequence 
evolution are classified based on their spectroscopic appearance. In general, one 
distinguishes two types of objects: supergiants and hypergiants.

Supergiants are stars of luminosity class I with subclasses la, lab, and lb. 
In the HR diagram they spread from the hottest to the coolest stars and are 
classified according to their effective temperature into blue supergiants (spectral 
types O and B), yellow supergiants (A, F, G), and red supergiants (K, M).

Objects in the category hypergiants spread also over a certain temperature 
range in the HR diagram. Known hypergiants have spectral types ranging from 
late-0 to G. Hypergiants are often assigned a luminosity class 0 or Ia+, indicating 
that these stars have luminosities close to the Eddington limit1.

1This is the maximum luminosity a star reaches when the outwards acting radiation force 
balances the inwards acting gravitational force.

2For a list with all Galactic WR stars see http://pacrowther.staff.shef.ac.uk/WRcat/

In addition to these purely temperature and luminosity-class based cat­
egories, evolved massive stars are also found in some evolutionary transition 
phases, typically associated with strong mass-loss and eruptions. These classes 
are briefly introduced.

Wolf-Rayet Stars Stars with a Wolf-Rayet (WR) classification are of spectral- 
type O and comprise the hottest (30 000 — 200 000 K) sample of evolved massive 
stars. WR stars have strong stellar winds with high mass-loss rates (10 5 — 
lO-4AÍ0yr-1) and wind velocities ranging from ~ 1000 km s 1 upto 5500 km s-1. 
These intense winds peel off the outer shells of the star, uncovering successively 
the products from the various burning phases. The characteristic emission lines 
of WR stars are formed in the extended and dense high-velocity wind region en­
veloping the very hot stellar photosphere. According to the spectral appearance 
one distinguishes nitrogen-rich and carbon-rich WR stars as type WN (strong 
nitrogen lines) and WC (with carbon lines), or WO (with strong oxygen and 
carbon lines). WN and WC stars are further subdivided into early (E) and 
late (L) types: WNE (early WN, spreading from WN1 to WN5), respectively 
WCE (WC1 to WC5), and WNL (late WN, spreading from WN6 to WN11), 
respectively WCL (WC6 to WC9).

WR stars are descendants of massive main-sequence stars (with initial masses 
> 25 M0) and most likely progenitors of core-collapse supernovae. More details 
on WR stars2 and their physical properties can be found in Crowther (2007).

B[e] Supergiants X special class of blue supergiants comprise the B[e] super­
giants. These are mostly supergiants of spectral type B (including a few objects 
of spectral types late-0 and early-A) that are surrounded by dense circumstellar 
environments, typically in the form of a dusty disk and a massive, ionized po­
lar wind. The central stars have luminosities in the range 104 < L/Lq < 106.

http://pacrowther.staff.shef.ac.uk/WRcat/


238 M. Kraus

The circumstellar matter gives rise to numerous emission (e) lines, including 
emission from forbidden transitions (marked by square brackets), leading to the 
designation B[e]. Their massive disks are factories for various molecular species 
whose emission features allow to deduce the structure and kinematics of these 
disks (e.g., Kraus et al., 2015b; Maravelias et al., 2018), which might be highly 
dynamical and variable (Oksala et al., 2012; Torres et al., 2018) or long-lived 
enough to provide an environment suitable for the formation of even minor bod­
ies or planets (Kraus et al., 2016).

B[e] supergiants are rare. They constitute just a few percent of all B-type 
supergiants. To date, a total of 33 objects has been identified and confirmed 
within the Milky Way and close-by galaxies, whereas another 25 objects have 
the status of B[e] supergiant candidates (Kraus, 2019).

Luminous Blue Variables Luminous Blue Variables (LBVs) are hot and lumi­
nous (log£/£o > 5.4) evolved massive stars that display characteristic vari­
ability in the form of either giant eruptions (such as the proto-type rj Car) or 
excursions to the cool A-F-type supergiant region within the HR diagram in the 
form of an S Dor cycle named after the first object, S Dor in the Large Magellanic 
Cloud, showing this behavior. These excursions to the red are sometimes also 
termed ’outburst’, but are not real outbursts connected with mass ejections but 
rather with an inflation of their envelopes at more or less constant luminosity.

S Dor cycles are a characteristic feature of LBVs based on which they can be 
distinguished from other types of hot luminous objects. They can last from years 
to decades. Without having displayed at least one full S Dor cycle or a major 
eruption, stars with otherwise similar properties to those of bona-fide LBVs, are 
only assigned the status of LBV candidates. A list of currently confirmed and 
candidate LBVs in Local Group galaxies is provided in Weis & Bomans (2020).

During the quiescent state of such an S Dor cycle, the stars appear like 
normal OB supergiants, sometimes displaying a WR-type (e.g., Maryeva et al., 
2019) or a B[e] supergiant spectrum with intense emission lines. But from the 
latter they can be separated based on specific optical and infrared characteristics 
defined in Kraus (2019). Quiescent LBVs cluster along a diagonal region in the 
HR diagram called the LBV or SDor instability strip (see Figure 1). When they 
reach maximum brightness in the S Dor cycle, they all appear at about the same 
cool temperature.

Due to the high mass-loss of LBVs and their (at least for some objects) giant 
eruptions, many LBVs are surrounded by nebulae of gas and dust with sizes of a 
few parsecs. While the morphology of the nebulae can be diverse, the majority 
displays bipolar structures (Weis, 2011).

It was long assumed that LBVs are a transitional phase in single star evolu­
tion. However, the detection of LBVs as progenitors of core-collapse supernovae 
is not in line with a transitional phase. Instead, it has been suggested that (at 
least some) LBVs might be the products of binary evolution (Smith, 2017).

Open Issues In summary, the evolution and final fate of massive stars depend 
severely on the initial conditions (mass, rotation speed, metallicity, magnetic 
fields, companion) and the amount of mass lost within each phase of their life.

Typically, stars within a certain category populate the same region within 
the HR diagram. However, diverse groups of stars may overlap, because they
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Figure 1. HR diagram for massive stars. Shown are evolutionary 
tracks of non-rotating stars from Ekstrom et al. (2012) for the indicated 
initial stellar masses on the ZAMS. Also included are representatives of 
the diverse groups of evolved massive stars. Dashes connecting symbols 
indicate the two temperature states, i.e., outburst and S Dor cycle for 
YHGs and LBVs, respectively. The thick solid kinked line represents the 
Humphreys-Davidson limit, the light-blue area marks the LBV/SDor 
instability strip, and the yellow region highlights the Yellow Void.

have the same effective temperature and luminosity, but are in different evolu­
tionary states (Figure 1). This can happen, because a certain combination of 
stellar parameters may occur more than once during the (red-ward, blue-ward, 
blue-loop) evolution of a massive star. Disentangling these populations is not al­
ways straight-forward. Consequently, some of the most relevant unsolved issues 
in massive star research comprise:

• What is their evolutionary state and connection to each other?

• Which physical mechanism causes enhanced mass-loss and outbursts?

e How much mass is lost and on which timescales?

• What is the structure and evolution of the ejected material?

Here, focus is given to the second item, and in the following observational and 
theoretical considerations of stellar pulsations in some types of evolved massive 
stars are discussed.
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1.3. Pulsations in Evolved Massive Stars
Pulsations are nowadays ubiquitously found in stars all over the HR diagram. 
But currently, we cannot infer from observations whether massive stars in tran­
sition phases such as the LBVs, WRs and B[e]SGs are pulsating3, because their 
dense winds usually hide their surfaces, and photometric variability is most likely 
affected by temporal changes in the wind and circumstellar matter rather than 
being purely due to pulsation activity. For the remaining of this Chapter, the 
attention is given to two groups of evolved massive stars: B supergiants and 
yellow hypergiants, and the possible role of pulsations as physical mechanism to 
trigger mass-loss and eruptions in these objects.

3There is one exception: The B[e]SG star LHA 120-S 73 in the Large Magellanic Cloud has
been suggested to pulsate based on detected line-profile variability of its photospheric He I line
(Kraus et al., 2016).

2. B Supergiants

Stars in the B supergiant (BSG) evolutionary state are the descendants of OB 
main-sequence stars. They have surface temperatures in the range Tefj = 10 000 — 
30 000 K and luminosities of L = 104 — 106LQ. BSGs drive winds with mass­
loss rates of M = 10 ' — IO5 M^yK1 and terminal velocities of Voc = 200 — 
3500kms *. These stars have been assumed to be well-behaved H-shell burning 
stars on their red-ward evolution, until the first BSG star exploded as supernova 
(SN1987A, West et al., 1987). While stars just off the main-sequence will not 
explode as supernova, this finding of a blue supergiant progenitor of SN1987A 
means that the group of BSGs consists of at least two coexisting populations: 
BSGs just beyond the main-sequence and BSGs in a post-red or post-yellow 
supergiant phase. A possible third population might comprise stars on a blue 
loop.

2.1. Characteristics of BSGs

BSGs can be characterized by three distinct properties, which are briefly outlined.

Light Curve Variability In principle, all OBA supergiants are variable in their 
visual light with amplitudes (A) and periods (P) of these microvariations in the 
range A = 0.01... 0.1 mag and P = 5...100d, respectively. The variabilities 
have been reported to obey an amplitude-luminosity relation, meaning that the 
brightest stars display the largest amplitudes (Maeder & Rufener, 1972). The 
light variations follow no clear periodicities, instead they appear to be semi­
regular. They are most pronounced in the sub-group of BA-type supergiants 
with luminosity class la. These extreme luminous stars are also often referred 
to as a Cygni variables (Sterken, 1977), named after the prototype of such stars 
a Cyg (Deneb). Detailed analyses of light curves of BSGs, e.g. from HIPPAR- 
COS, resulted in the discovery of hundreds of new variable stars, of which 29 
objects have been classified by Waelkens et al. (1998) as new a Cygni variables 
exhibiting clear periodic variations with amplitudes between 1 and a few tens of 
millimagnitude with periods ranging from a few hours to a few weeks.
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Line-Profile Variability BSGs and their sub-class, the a Cyg variables, display 
variability in their line-profiles with Ha being the most prominent one. Due to 
the winds of the BSGs, their Ha lines display typically a P Cygni-type profile, 
which can vary significantly in strength and shape (see, e.g., Rosendhal, 1973; 
Kaufer et al., 1996). But also pure photospheric lines seem to display complex 
variability patterns indicating cyclic variations in radial velocities. This might 
indicate the possible simultaneous excitation of pulsation modes with periods 
typical for non-radial oscillations and radial overtones (Kaufer et al., 1997).

“Macro-turbulent” Line Broadening The most puzzling characteristic of BSGs 
is their huge amount of broadening in excess to stellar rotation. Simón-Díaz 
& Herrero (2007) analyzed photospheric line profiles of OB stars to derive the 
stellar rotation velocities projected to the line of sight (vrot sin?) using the Fourier 
transform method. This mathematical approach is a very valuable tracer for 
stellar rotation velocities, because the Fourier transform of the rotation profile 
possesses zero points, which are correlated with vrot sin?. Computing the Fourier 
transform of observed photospheric lines thus allows to directly read off the 
rotation velocity of the star projected to the line of sight. For more details on 
the stellar rotation profile and its Fourier transform, the interested reader is 
pointed to Chapter 18 in the textbook of Gray (2005).

The sample of Simón-Díaz & Herrero (2007) contained also OB supergiants, 
for which the authors recognized an extra, non-negligible broadening component. 
This component has more or less a Gaussian profile shape so that it has been 
dubbed as “macro-turbulence” without knowing a priori its physical origin. In 
fact, the velocities of this “macro-turbulence” needed to reproduce the observed 
widths of photospheric lines of BSGs turned out to exceed by far the value 
of the sound speed in the atmosphere of BSGs4, meaning that this “macro­
turbulence” has highly supersonic values (see Figure 1 in Simón-Díaz et al., 
2010). If this velocity was due to real turbulences, shocks would form, creating 
X-ray emission which is not observed. Therefore, the extra broadening cannot 
be due to turbulence but must have another physical nature. And a possible 
explanation might be given by the superposition of many pulsations.

4As an example, a value of cmacro = 80kms 1 along with crot sin i = 47kms 1 is needed to fit 
the shape of the Si in lines of the B0 la supergiant star HD 89767, (see Figure 4 in Puls, 2008).

2.2. Discovery of Pulsations in BSGs
The previously mentioned characteristics of BSGs (light-curve and line-profile 
variability along with macro-turbulent line broadening) are a strong indication 
for a highly dynamical atmosphere and might point towards the presence of os­
cillations in these luminous objects. However, it was not expected that BSGs 
pulsate because of their radiative helium core, which immediately damps all 
modes propagating towards the core. Therefore, it was a big surprise when Saio 
et al. (2006) reported on the discovery of multiple oscillations in the BSG star 
HD 163899. These authors had analyzed a 37 day long continuous, high preci­
sion photometric light curve collected with the Canadian satellite MOST. Their 
studies revealed 48 periods from 10 h to 25 d, which they assigned to pulsations 
in both p-modes and g-modes.
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Especially the occurrence of g-modes in a post-main sequence massive super­
giant star was surprising. The stability analysis of Saio et al. (2006) revealed that 
the existence of g-modes can be explained by the development of an intermedi­
ate convective zone (ICZ) connected with the hydrogen burning shell. This ICZ 
results from a semi-convection episode during the main-sequence evolution. At 
this convective zone selected g-modes can be reflected back towards the surface. 
The ICZ hence prevents the modes from penetrating the radiative damping core 
of the star and, therefore, supports the establishment of g-mode pulsations. But 
for this, the position of the ICZ within the envelope plays an important role. If it 
is located too close to the surface, oscillations cannot be excited, and if it is too 
close to the core, the excited oscillations will be significantly damped. Moreover, 
the presence of physical effects such as rotation (mixing) and magnetic fields, as 
well as the strength of mass-loss, semi-convection, and overshooting during the 
main-sequence evolution have been found to influence the evolution of massive 
stars and thus can favor or prevent the formation of the ICZ (see, e.g., Godart 
et al., 2009, 2014). In that respect it is worth mentioning that follow-up inves­
tigations of Daszynska-Daszkiewicz et al. (2013) have shown that the detection 
of pulsations is not necessarily a proof for the existence of an ICZ, but only for 
the presence of some reflective layer, which might also have a different physical 
origin.

Saio et al. (2006) computed stellar models using the updated OPAL opacities 
(Iglesias & Rogers, 1996) for stars covering a range of initial masses of 7-20 Mq 
from the main-sequence into the BSG domain. As in most stars, it is the k- 
mechanism that excites the modes in BSGs. This mechanism acts due to the iron- 
opacity bump in the superficial layers. Their analysis revealed a new instability 
domain for g-mode pulsations, covering the loci of BSGs in the HR diagram. For 
the BSG star HD 163899 the frequencies of these pulsations were in fairly good 
agreement with the frequencies found from the photometric light curve. Follow­
up studies of BSGs with known photometric variability, e.g. from HIPPARCOS 
light curves, were found to have stellar parameters that placed them into the 
newly identified instability domain and were hence considered as gravity-mode 
pulsators (Lefever et al., 2007).

With the knowledge of multiple g-mode pulsations acting in BSGs, Aerts 
et al. (2009) could show that the shapes of the metal line profiles of BSGs can 
be naturally explained by combining the broadening caused by the velocity of 
hundreds of low-amplitude, non-radial gravity-mode pulsations. This was the 
first firm proof that pulsations can significantly contribute to (if not completely 
explain) the “macro-turbulent” line broadening observed in BSGs. Besides g- 
mode pulsations as the cause for “macro-turbulence” other scenarios appeared in 
the literature and require further notice. One of them comprises stochastically 
excited oscillations caused by subsurface convection (Grassitelli et al., 2015), 
another one proposes convectively driven internal gravity waves (Aerts & Rogers, 
2015). Which of them is really responsible for the “macro-turbulence” in BSGs 
needs to be further studied, and maybe the truth lies in the interplay of more 
than one effect.
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2.3. Pulsation Behavior in the Different BSG Populations
The discovery of pulsations in BSGs and the identification of the new instabil­
ity domain helped to explain the observed variabilities in a number of BSGs. 
However, those BSGs that were classified as a Cygni variables display variabil­
ities that point towards multiple periods spreading over a large period range. 
These are not in agreement with what would be expected from pure non-radial 
g-mode oscillations. Especially the long periods are more likely connected to 
radial modes. To test this hypothesis, Saio et al. (2013) extended their calcu­
lations of pulsation instabilities and computed the pulsation patterns following 
the evolution of massive stars up to the red-supergiant (RSG) stage and beyond 
for stars with initial masses up to 25 Mq. They did that for the case of both 
non-rotating stars and stars rotating initially with 40% of their critical speed.

Figure 2. Evolutionary tracks (top) of stars with rotation and the 
excited pulsation periods in the models (bottom) during the pre- (left) 
and post-RSG (right) phase. For comparison, the period ranges of some 
a Cyg variables in the Milky Way and NGC 300 are included. Figure 
is taken from Saio et al. (2013) (their Figure 5).

As stellar evolution calculations of Ekstrom et al. (2012) have shown, rotat­
ing stars tend to evolve back to the blue side of the HR diagram after having 
passed through a cool, RSG phase, whereas non-rotating stars evolve only to the 
RSG stage and explode there as supernovae. Based on these latter models, the 
calculations of Saio et al. (2013) (see Figure 2) predict the excitation of radial 
pulsations only during the main-sequence and shortly after, and during their 
RSG state. In between, i.e. in the temperature regime from 20 000 K down to 
about 6 000 K where the a Cygni variables reside, no radial modes are excited.

For the stellar models with rotation, the situation with respect to the ex­
citation of radial modes during the pre-RSG evolution is very similar to the 
non-rotating models, and the radial fundamental mode is only excited within 
the 3 Cephei instability region. Within the BSG domain only very few oscilla­
tory convection modes are predicted which cannot explain the number and period
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range of the observed oscillations in a Cygni variables. However, after the stars 
have passed through the RSG state, they develop a complex frequency behavior. 
They are capable to establish and maintain numerous pulsation modes spreading 
over a large period range, in agreement with the range of observed periods in the 
a Cygni variables.

Among the excited modes are several radial ones, including the so-called 
radial strange modes. These strange modes are particularly interesting, be­
cause they have been proposed to cause pulsation-driven time-variable mass-loss 
(Glatzel et al., 1999), leading to the interpretation of periodic variability of su­
pergiants in terms of strange-mode instabilities (Glatzel & Kiriakidis, 1993). A 
prerequisite for their excitation is that the star needs to reach a luminosity over 
mass ratio of LJM, > 104Lq/Mq (Gautschy & Glatzel, 1990; Glatzel, 1994). 
Exceeding such a limit is no problem for massive stars that have passed through 
the RSG phase, during which they tend to loose a significant fraction of their 
mass via dense dust-driven winds thus increasing their L*/M* easily by a factor 
of 2 or more. Consequently, post-RSGs have much lower masses but similar lu­
minosities than their younger pre-RSG counterparts, and present a completely 
different pulsation behavior. These differences can be used to pin down the evo­
lutionary stage of BSGs by sorting them into pre- and post-RSGs, and to identify 
in such way possible supernova progenitors, for which the a Cygni variables seem 
to be suitable candidates.

2.4. Identification of Pulsations in BSGs

For the identification of stellar pulsations two types of observations are typically 
used: photometric light curves and spectroscopic time series.

Photometric Light Curves Photometric variability in BSGs has been detected 
based on light curves, especially from satellite missions such as HIPPARCOS 
and MOST as mentioned before. But also other satellites such as BRITE and 
TESS observed (and still observe) a number of them.

However, light curves of BSGs, especially when the band passes are opti­
mized for the red, face two issues. Firstly, BSGs have stellar winds, which is 
obvious from P Cygni-type profiles of their Ha lines. These winds are not steady 
but vary in time as can be seen from the sample of Ha profile shapes of the 
BSG star 55 Cyg shown in Figure 3. But the variation is not periodic, as has 
been demonstrated by Kraus et al. (2015a). The wavelength range covering Ha 
is contained in the white-light filter of HIPPARCOS, and in both the red band 
pass of BRITE and the wide band pass of TESS. Therefore, any variability in 
the Ha line due to changes in the wind conditions will automatically imprint 
a variability signature on the stellar brightness measured by the photometric 
magnitude.

Second, depending on their density distribution, the winds of BSGs can 
alter the continuum flux. These winds have a radial velocity distribution that is 
usually described with the so-called /3-law, defined by v33 = uq + (voc — r’o)(l — 
R^r^, where Voc is the terminal wind velocity, uq is the velocity at the base of 
the wind, R* is the stellar radius, and 3 describes the “steepness” of the velocity 
increase. Values of 3 f°r OB stars with line-driven winds are normally in the 
range 0.8-1.0, but for many BSGs, 3 has been proposed to take values of 3 or



Pulsations in Evolved Massive Stars 245

Figure 3. Snapshots of the Ho line of the BSG star 55Cyg demon­
strating the wind variability. The data were taken during a 14-day 
period in 2013 with the Perek 2-m telescope at Ondfejov Observatory.

even higher (e.g., Crowther et ah, 2006). However, the higher the value of /?, the 
higher is the density within the innermost wind region. As has been shown by 
Kraus et al. (2008), winds of BSGs with /? > 1 significantly contribute with their 
free-free and free-bound emission to the total continuum emission, especially 
in the red part of the spectrum. Any variation in the wind thus produces an 
additional variability signal that influences and perturbs the measured stellar 
brightness and can (maybe severely) hamper the frequency analysis.

Considering these two effects, it is questionable whether photometric obser­
vations in broad-band filters or even in white light (such as TESS) can provide 
reliable insight into the pulsation behavior of those BSGs (such as the a Cygni 
variables), whose photometric fluxes are contaminated by variable wind emis­
sion due to significant changes in stellar mass-loss rates affecting both the red 
continuum and the Her line profile.

JD—2458700
60

Figure 4. TESS example light curve of the a Cygni variable 55 Cygnus.

An example of a TESS light curve5 of an a Cyg variable is shown in Figure 4. 
TESS has observed this star during two periods labeled as sectors 15 and 16. 
Obviously, the character of the variability has changed between the two observing 
runs. While it showed a smooth behavior during the first period, it appears more 
irregular and chaotic during the second one.

5The data described here may be obtained from the MAST archive at https://dx.doi.org/ 
10.17909/t9-ncv5-bb52.

https://dx.doi.org/
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Spectroscopic Time Series Spectroscopic time series of high-quality (in both 
resolution and signal-to-noise level) provide an excellent tool to unveil whether 
the variability in the observed line profiles are due to pulsations, and to inves­
tigate whether the periodicities are strict such as for long-term coherent modes. 
This requires the monitoring of photospheric lines, typically of metals, which are 
not affected by superimposed emission from the stellar wind.

As has been discussed in a previous Chapter, pulsations cause changes in 
radial velocity and in the profile shape of the lines. To quantify these parameters, 
we make use of the so-called “velocity moments” of the lines, based on which a 
line profile is fully characterized (see, e.g., Aerts et al., 1992, 2010a; North & 
Paltani, 1994). Considering that a spectral line is a set of discrete measurements 
(X^Ff), its moments are defined in the following way:

Mo
N

= 52(1 -F¿)A^, 
i=l
N

(i)

Mi = 52(1 - FjXxj - x0)Axj, 
i=l
N

(2)

Mi = 52(1 - FiXxi ~ x0)2Axí, 
i=l
N

(3)

M3 = 52^ - fmf. - ^0)3atí, 

i=l
(4)

with the normalized flux F¿ measured at wavelength A¿ for pixel i, Axí = x^ — xt-i 
whereby xt is the velocity corresponding to A¿ with respect to the laboratory 
wavelength of the line (Aq), and xq is the relative motion of the star with respect 
to the Sun that needs to be corrected for to guarantee that the odd moments 
have an average of zero.

For practical purposes one utilizes the normalized moments, which are de­
fined as (F) = Mj Mu for j = 1, 2, 3. The units of these moments are (kms”1),! 
and the first three of these normalized moments are connected to specific prop­
erties of the profile:

(W^ is the radial velocity, i.e., a measure for the center of gravity of the line,

(v2^ provides a measure for the line width, and

^v3^ measures the skewness, i.e. the asymmetry of the profile.

Each photospheric line forms over a certain range of depth in the atmosphere, 
and the actual velocity of motion is a function of stellar longitude, latitude, and 
depth. Moreover, we see the stellar surface only in its projection, and the radial 
velocity is inferred from the integration over that projected surface. Therefore, 
the first moment provides not any pulsation velocity, but it can be used to derive 
the periods of the pulsations.
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The variations recorded in the moments can furthermore be used to sepa­
rate pulsating stars from stars with other types of variability, such as stars with 
surface spots. Stellar spots are commonly seen in chemically peculiar stars, in 
which localized over- and under-abundances in specific elements cause surface 
inhomogeneities. Consequently, the variability in such stars is linked to the stel­
lar rotation period, and different elements display diverse variabilities (see e.g., 
Briquet et al., 2004; Lehmann et al., 2006) in contrast to pulsating stars, in 
which the lines from different elements vary in phase. Moreover, theoretically 
generated profiles of pulsating stars have revealed that their first and third nor­
malized moments vary in phase as well (de Pauw et al., 1993). This property is 
also useful to discriminate pulsating stars from objects with spots (e.g., Briquet 
et al., 2004).

Application of the moment method to spectroscopic time series of two BSG 
stars (a Cyg and 55 Cyg) collected with the Perek 2-m telescope in the wave­
length range 6250 — 6750 Â with a spectral resolution of 13 000 and a signal-to- 
noise ratio of S/N > 300 resulted in interesting discoveries. For a Cyg, a very 
short oscillation period of just 1.59 hours (Kraus et al., 2012) has been identi­
fied from several short-term time series of the photospheric Sill and Hei lines 
(Figure 5).

10000 10000
5000 5000 10000

20000

-10000-5000 -5000
-20000-10000 -10000

1.5 1.5 0.5 1.50.5 0.5
Phase (P=1.59h) Phase (P=1.59h) Phase (P=1.59h)

Figure 5. First and third moment of the photospheric 
Si II AA6347,6371 and the HeiA6678 lines of the BSG star a Cyg. The 
spectroscopic time series were taken in 2010 and 2012. The oscillation 
character is deduced from the fact that both, the first and third 
moments of each element and the moments of different elements vary 
in phase. The data have been phased to the identified period of 1.59 h. 
Credit: Kraus et al. (2012), reproduced with permission ©ESO.

In the long-term spectroscopic time series of the BSG star 55 Cyg, a total 
of 19 periods have been found from the analysis of the radial velocity curve of 
the photospheric Hei A6678 line. These periods range from a few hours to 22.5 
days, in agreement with their classification as p-modes, g-modes, and at least 
one radial strange mode (Kraus et al., 2015a). Moreover, the analysis of the
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wind and stellar parameters of 55 Cyg based on computation of the Balmer, 
helium and silicon lines using the FASTWIND code (Puls et al., 2005) revealed 
that the star has a time-variable radius along with variable wind conditions, in 
agreement with cyclic phases of enhanced mass-loss. In particular, for the stellar 
parameters it has been found that the effective temperature, Teff, ranges from 
18 570 K to 19 100 K, the stellar radius is R* = 57± 1R0 but varies from 52 to 65 
R0, and the stellar luminosity is \ogL*/Le = 5.57 ±0.03. With a spectroscopic 
mass of 34±4M0, L*/M* > 104 Lq/M0, which is the needed condition for the 
star to be able to excite strange mode pulsations. In addition, the line profiles 
revealed values for tyotsini = 50 — 60kms 1 and t’macro = 10 — 50kms '.

For the wind parameters of 55 Cyg it was found that M varies between 1.5 x 
10 7 and 4.6 x 10-7A7Qyr-1, meaning that the change in mass loss occasionally 
exceeds a factor of 3. In addition, v^ varies between 230 and 350 kms *, with 
exceptions of 600 and 700 kms 1 at times when also the mass-loss rates were 
increased. The large amount of detected periods including a radial strange mode 
resulted in the classification of 55 Cyg as a post-RSG object and hence as an 
a Cyg variable.

The findings of multiple pulsation periods in 55 Cyg have been confirmed by 
numerical non-linear simulations performed by Yadav & Glatzel (2016). Their 
calculations additionally unveiled that 55 Cyg undergoes strange-mode instabil­
ities with triggered mass-loss, in agreement with the results derived from the 
observations.

Periodic mass-loss episodes related to a time-variable oscillation mode have 
also been found in the BSG star HD50064 (Aerts et al., 2010b), and wind vari­
ability along with a pulsation-mass-loss relation was postulated for a sample 
of BSGs by Haucke et al. (2018). These results reinforce the need of in depth 
studies of the pulsation and mass-loss properties and their interrelation in these 
luminous objects.

3. Yellow Hypergiants

Stars falling into the category of yellow hypergiants (YHGs) reside in the temper­
ature regime Teff = 4000 — 9000 K and have luminosities of L = IO5"3 — 105'8 L@. 
These objects have evolved from progenitor stars with initial masses in the range 
25 — 50 Mq. YHGs are rare objects, implying a short lifetime of this evolutionary 
transition phase. In total we currently know of ~30 objects that are classified 
as YHGs or YHG candidates in the Milky Way and neighboring galaxies of the 
Local Group (e.g., de Jager, 1998; Clark et al., 2005; Kourniotis et al., 2017), 
and so far, only a handful of them have been thoroughly examined.

YHGs have been proposed to have passed through the RSG phase and evolve 
now back to the hot side of the HR diagram (de Jager, 1998). The structure 
of YHGs can best be approximated by a compact core that is surrounded by 
a huge inflated, low-density envelope. Due to this inflation, the surface gravity 
of YHGs is very small or can even approach a value of zero. This means, that 
even smallest perturbations within the atmosphere can initiate mass-loss from 
the star.

When the star reaches a surface temperature of ~ 7000 K, its atmosphere 
becomes dynamically unstable (Nieuwenhuijzen & de Jager, 1995; Lobel, 2001).
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Strong mass loss sets in, creating what is called a pseudo-photosphere and veiling 
the central object. Such an outburst phase can last from a few months up to 
years during which the pseudo-photosphere mimics a much cooler temperature 
of the object. Only after the termination of the strongly enhanced mass-loss and 
when the released material has diluted, the star appears back at its real (hotter) 
temperature. This process repeats until the stellar atmosphere finally reaches 
again an equilibrium state. However, for a stable state, the star must reach 
an effective temperature of about 12000 K. This means that the star remains 
unstable until it has lost its complete outer layers, which is done most likely in 
a series of such outbursts. The temperature region of this instability domain,: 
spreading from 7000 to 12000 K in the HR diagram, appears to be vacant of stars 
and was thus called the Yellow Void.

Because the star seems to move back and forwards in the HR diagram, YHGs 
are indicated in Figure 1 by connecting lines between the real (hot) position of 
the star and its position during outburst (cool). The multiple attempts of the 
star to pass through this temperature domain has been described as bouncing 
at the Yellow Void (de Jager, 1998) respectively Yellow Wall (Oudmaijer et al., 
2009). As a consequence of this bouncing and the multiple mass ejection phases, 
the star might be surrounded by several distinct shells of gas and dust as is seen, 
e.g., around the star IRAS 17163-3907 dubbed as the fried-egg nebula (Lagadec 
et al., 2011).

Most famous for its outbursts is the Galactic YHG star p Cas (=HD 224014). 
This star has been monitored for more than a century. During that time, the 
star underwent several outbursts with major events in 1945-1947, 1985-1986, 
2000-2001, and a most recent, shorter and less pronounced one in 2013 (Kraus 
et al., 2019). The outbursts can be traced by a strong decrease in brightness 
by more than 1 mag in V-band along with the development of spectroscopic 
signatures of molecules such as TiO and CO that form within the developing 
cool, massive wind (e.g., Lobel et al., 2003; Gorlova et al., 2006). The decrease 
in the time interval between individual outbursts might indicate that the star 
could be preparing for a major eruption that might help to catapult it out of the 
Yellow Void instability region and would finally allow the star to reach a new, 
hot equilibrium state.

In contrast to p Cas, the YHG star V509Cas (=HD 217476, HR8752) dis­
played a different behavior over the past ~ 150 yr. It also underwent a number 
of material ejection events during which a pseudo-photosphere was produced 
and the temperature dropped. However, underneath these temperature fluctu­
ations the star experienced a real increase in effective temperature from about 
5000 K back in 1973 to 8000 K in 2001 (Nieuwenhuijzen et al., 2012). Since then, 
this development seems to have stopped (Aret et al., 2017). A similar trend 
with an increasing effective temperature has been reported for the YHG object 
IRC+10420. Spectroscopic monitoring of this object revealed that it has changed 
from spectral type F8 to a mid-A type, meaning that it heated up by more than 
1000 K over the course of about 20 years (Oudmaijer et al., 1996; Oudmaijer, 
1998), and then stabilized in the vicinity of the high-temperature boundary of 
the Yellow Void (Klochkova et al., 2016).
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3.1. Indications for Pulsations in YHGs

Outside their outburst phases YHGs display both spectroscopic and photometric 
variability, that are reminiscent of pulsation activity.

Theoretical investigations by Fadeyev (2011) proposed that the «-mechanism 
operating in the helium ionization zones can cause radial pulsations with periods 
up to 200 d. However, the observed light curves of YHGs display low-amplitude 
photometric variability which has quasi-periods that are much longer, reaching 
a few hundred days (e.g., Percy & Zsoldos, 1992; Arkhipova et al., 2009; Kraus 
et al., 2019). These quasi-periods can most likely be ascribed to semi-regular, 
non-radial pulsations (Lobel et al., 1994).

Spectroscopic monitoring reveals that the atmospheres of YHGs are highly 
dynamical, as has been proven by radial velocity measurements of a variety 
of atmospheric lines formed in different depths (e.g., Klochkova et al., 2014; 
Klochkova, 2019). These atmospheric motions also display a quasi-periodic vari­
ation in agreement with semi-regular pulsations, and it has been found that this 
pulsation activity increases, i.e. develops larger velocity amplitudes prior to out­
bursts (Lobel et al., 2003; Kraus et al., 2019). Such a behavior is commonly 
observed in relation to the excitation and development of strange mode instabil­
ities. Alike the a Cygni variables YHGs have lost a significant amount of mass 
during their previous RSG evolution so that they fulfill the required criteria of 
a high luminosity to mass ratio for strange mode excitation, and detailed nu­
merical investigations are badly needed and currently underway that will help 
to deepen our comprehension of pulsations in YHGs and their ability to trigger 
outbursts.

4. Conclusions

This Chapter was devoted to some intriguing post-main sequence phases through 
which a massive star may evolve and which have been reported to display pulsa­
tions. Among them were the BSGs, which can be either in a pre- or a post-RSG 
stage, the latter are also known as a Cygni variables. It has been shown that 
these two populations display divers pulsation properties. In particular, stars 
in the post-RSG phase typically display many more pulsation modes than their 
younger counterparts. Detailed pulsation analyses of BSGs can thus provide a 
meaningful tool to separate these two BSG populations. However, care should 
be taken with the choice of data for the analysis. The photometric light curves 
might be contaminated by the variable emission of their high-density winds, 
which can lead to false results.

A second group of objects, that has been presented, are comprised by the 
YHGs. Alike the a Cygni variables, YHGs are also massive stars in their post- 
RSG evolution, but these objects reside still within the cool, yellow domain 
of the HR diagram. YHGs perform long-term (several hundred days) quasi- 
periodic oscillations and undergo from time to time outbursts with strongly en­
hanced mass loss. These outbursts, which are also related to the formation of a 
pseudo-photosphere, lead to an apparent (much) cooler temperature of the ob­
ject. Moreover, the objects display a strongly enhanced pulsation activity prior 
to the outbursts.
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Both groups of stars, the a Cygni variables and the YHGs, provide ideal 
conditions for the excitation of strange-mode instabilities. Investigations of the 
properties of such strange modes revealed that these instabilities can lead to 
significant mass-loss, which can reach values comparable to or even in excess 
to those from the line-driven winds of these objects. Consequently, strange­
mode pulsations might provide an important component to the observed wind 
variability and the formation of structures and density inhomogeneities in the 
winds of a Cygni variables. Moreover, they might be a suitable trigger for the 
outbursts observed in YHGs.

YHGs and a Cygni variables are cornerstone objects in the evolution of 
massive stars, because they constitute a link between the cool RSGs and the hot 
pre-supernova evolutionary stages such as Wolf-Rayet stars and Luminous Blue 
Variables. Detailed knowledge about the mass-loss behavior in these transition 
phases in stellar evolution is essential because the mass loss controls the fate of 
these fascinating objects.
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